Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93374
標題: 基於大型語言模型的心理輔助聊天機器人可行性研究
On the Feasibility Study of a Psychotherapy Assistant Chatbot Based on Large Language Models
作者: 楊子瑩
Tzu-Ying Yang
指導教授: 莊裕澤
Yuh-Jzer Joung
關鍵字: 憂鬱症,對話系統,聊天機器人,大型語言模型,Prompt Framework,
Depression,Dialogue System,Chatbot,Large Language Model,Prompt Framework,
出版年 : 2024
學位: 碩士
摘要: 憂鬱症是一種常見且嚴重的心理健康問題,影響全球數百萬人。不僅對個人的生活質量產生重大負面影響,對於患者周遭的家人朋友來說是重大的心理負擔,對於社會也是一種負擔。傳統的心理治療方法如認知行為治療(CBT)、焦點解決治療(SFBT)等療法在治療憂鬱症方面已有顯著成效。然而,這些治療方法通常需要由專業的心理治療師進行,而許多患者因資源有限或汙名化而難以獲得適當的治療,也受限於時間空間,難以在需要的時候取得適時的幫助。
近年來,大型語言模型(LLM)的迅速發展為心理健康領域帶來了新的希望。LLM具備處理自然語言的強大能力,能夠生成具有連貫性和上下文相關性的對話。因此,本研究希望探索將LLM應用於心理諮商聊天機器人,建立一個能隨時隨地提供情緒支持的聊天機器人,並在對談過程中融入心理治療療法的方法論,作為一個額外的支持管道,以緩解心理諮商資源不足的困境。
本研究的目的是研究使用大型語言模型開發一個具有使用心理治療療法來與使用者對談的聊天機器人的可行性。聊天機器人會依據患者的憂鬱程度及自殺風險,選擇適當的心理治療療法作為對話的主軸。實驗分為兩個階段進行:第一階段,我們將對話歷史作為輸入,利用LLM預測患者的憂鬱程度及自殺風險,並 依據此資訊對應到不同的心理治療療法。第二階段,我們將為每種心理治療療法設計特定的提示,使LLM能夠根據指定的療法技巧與患者進行對話,提供個性化的治療體驗。在評估階段,我們使用多項指標來衡量聊天機器人的表現,包括對話的相關性、一致性、情緒理解、積極性及技巧正確性。結果顯示,本研究三種心理治療療法的對話在情緒理解以外的四項指標都獲得4分以上或接近4分的評分,顯示我們所設計的framework是有助於讓大型語言模型使用特定心理治療療法來與使用者進行對談的。
Depression is a common and severe mental health issue affecting millions of people worldwide. Besides the impact on individuals' quality of life, it also places a considerable psychological burden on their families, friends as well as the society. Traditional psychotherapies such as Cognitive Behavioral Therapy (CBT), Solution-Focused Brief Therapy (SFBT), etc., have been proved to be effective in depression treatment. However, these treatments often need to be performed by professional therapists, and many patients struggle to access proper treatment due to the limited resource or stigma of mental illness.
Recently, the rapid development of large language models (LLMs) has brought new hope to the field of mental health. LLMs have powerful natural language processing capabilities, enabling them to generate coherent and contextually relevant conversations. Therefore, this study aims to explore the application of LLMs in creating a psychological counseling chatbot, designed to provide emotional support anytime and anywhere. This chatbot incorporates the methodologies of psychotherapies into its conversations, serving as an additional support channel to address the shortage of psychological counseling resources.
The purpose of this study is to examine the feasibility of developing a chatbot using LLMs that can engage in therapeutic conversations with users. The chatbot will determine the appropriate psychotherapy for conversations based on the user's level of depression and suicide risk. The experiment is conducted in two phases. In the first phase, we use conversation history as input and employ LLMs to predict the user's level of depression and suicide risk. Based on the predicted results, the chatbot determine the psychotherapy it would use as the main structure of the following conversation. In the second phase, a specific set of prompts is designed for each psychotherapy. These prompts will serve as instructions to the LLM, allowing it to engage in a dialogue with the patient based on the specified therapy technique, thereby providing a personalized treatment experience for different users. In the evaluation phase, we use a number of metrics to measure the chatbot's performance, including conversation relevance, consistency, emotional understanding, proactivity, and technical accuracy. The results showed that the conversations of the three psychotherapies in this study all scored above or close to 4 points in all four metrics except emotional understanding, indicating that the framework we designed is helpful for large language models to use specific psychotherapies to talk to users.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93374
DOI: 10.6342/NTU202402229
全文授權: 同意授權(限校園內公開)
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
17.25 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved