請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93373完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯淳涵 | zh_TW |
| dc.contributor.advisor | Chun-Han Ko | en |
| dc.contributor.author | 莊庭瑜 | zh_TW |
| dc.contributor.author | Ting-Yu Chuang | en |
| dc.date.accessioned | 2024-07-30T16:11:38Z | - |
| dc.date.available | 2024-07-31 | - |
| dc.date.copyright | 2024-07-30 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-27 | - |
| dc.identifier.citation | References
Ahn, J., Chae, H. S., Chin, Y. W., & Kim, J. (2017). Alkaloids from aerial parts of H. cordata and their anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters, 27(12), 2807-2811. Asakawa, Y., Tomiyama, K., Sakurai, K., Kawakami, Y., & Yaguchi, Y. (2017). Volatile compounds from the different organs of Houttuynia cordata and Litsea cubeba (L. citriodora). Journal of Oleo Science, 66(8), 889-895. Bae, J. Y., Choi, J. S., Kang, S. W., Lee, Y. J., Park, J., & Kang, Y. H. (2010). Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV‐B irradiation. Experimental Dermatology, 19(8), e182-e190. Bhardwaj, N., Kumar, R., & Verma, A. K. (2019). Ultrasonic-Assisted Enzymatic Hydrolysis of Cellulose: An Overview. Biotechnology and Bioengineering, 141(2), 176-184. Chang, J. S., Chiang, L. C., Chen, C. C., Liu, L. T., Wang, K. C., & Lin, C. C. (2001). Antileukemic activity of Bidens pilosa L. var. minor (Blume) Sherff and Houttuynia cordata Thunb. The American Journal of Chinese Medicine, 29(02), 303-312. Chen, W. H., Tu, Y. J., Sheen, H. K., & Wang, M. K. (2015). Comparison of acid and alkaline pretreatments for enzymatic saccharification of sugarcane bagasse. Journal of Bioscience and Bioengineering, 119(5), 547-552. Chen, W., Zhang, L., Chen, X., Zhang, B., Wang, Q., & Wang, Z. (2013). Enhancement of cellulose conversion by ultrasound-assisted alkaline pretreatment and enzymatic hydrolysis. Bioresource Technology, 142, 540-548. Chen, Y. F., Chang, W. H., Tsai, H. Y., Lee, M. M., & Wu, T. S. (2021). Bioactivities and action mechanisms of active compounds from Hottuynia cordata THUNB on human lung cancer cells. BioMedicine, 11(2), 40. Chiow, K. H., Phoon, M. C., Putti, T., Tan, B. K., & Chow, V. T. (2016). Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pacific Journal of Tropical Medicine, 9(1), 1-7. Choquenet, B., Couteau, C., Paparis, E., & Coiffard, L. J. (2008). Quercetin and rutin as potential sunscreen agents: determination of efficacy by an in vitro method. Journal of Natural Products, 71(6), 1117-1118. Cushnie, T. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343-356. Dhali, K., Ghasemlou, M., Daver, F., Cass, P., & Adhikari, B. (2021). A review of nanocellulose as a new material towards environmental sustainability. Science of the Total Environment, 775, 145871. Fahlman, B. M., & Krol, E. S. (2009). UVA and UVB radiation-induced oxidation products of quercetin. Journal of Photochemistry and Photobiology B: Biology, 97(3), 123-131. Fukushima, Y., Takahashi, Y., Hori, Y., Kishimoto, Y., Shiga, K., Tanaka, Y., & Kondo, K. (2015). Skin photoprotection and consumption of coffee and polyphenols in healthy middle‐aged Japanese females. International Journal of Dermatology, 54(4), 410-418. Gao, Y., Xu, J., Zhang, Y., Yu, Q., Yuan, Z., & Liu, Y. (2013). Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Bioresource Technology, 144, 396-400. Ghosh, A., Ghosh, B., Parihar, N., Ilaweibaphyrnai, M., Panda, S. R., Alexander, A., ... & Pemmaraju, D. B. (2022). Nutraceutical prospects of Houttuynia cordata against the infectious viruses. Food Bioscience, 50, 101977. Guo, X. D., Zhang, D. Y., Gao, X. J., Parry, J., Liu, K., Liu, B. L., & Wang, M. (2013). Quercetin and quercetin‐3‐O‐glucuronide are equally effective in ameliorating endothelial insulin resistance through inhibition of reactive oxygen species‐associated inflammation. Molecular Nutrition & Food Research, 57(6), 1037-1045. Guo, X., Zhou, H., Huang, C., Xie, F., & Luo, S. (2016). Ultrasonic-assisted alkaline pretreatment of rice straw for enhancing enzymatic saccharification. Bioresource Technology, 219, 198-202. Gurung, A. B., Ali, M. A., Lee, J., Farah, M. A., Al-Anazi, K. M., & Al-Hemaid, F. (2021). Identification of SARS-CoV-2 inhibitors from extracts of Houttuynia cordata Thunb. Saudi Journal of Biological Sciences, 28(12), 7517-7527. He, H., Li, A., Li, S., Tang, J., Li, L., & Xiong, L. (2021). Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed Pharmacother, 134, 111161. doi:10.1016/j.biopha.2020.111161 Hseu, Y. C., Chou, C. W., Kumar, K. S., Fu, K. T., Wang, H. M., Hsu, L. S & Yang, H. L. (2012). Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the upregulation of the HO-1 and Nrf-2 antioxidant genes. Food and Chemical Toxicology, 50(5), 1245-1255. Hsu, C. C., Yang, H. T., Ho, J. J., Yin, M. C., & Hsu, J. Y. (2016). Houttuynia cordata aqueous extract attenuated glycative and oxidative stress in heart and kidney of diabetic mice. European Journal of Nutrition, 55, 845-854. Jaisinghani, R. N. (2017). Antibacterial properties of quercetin. Microbiology Research, 8(1), 6877. Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polymer Engineering & Science, 49(7), 1253-1272. Kamide, K., & Saito, M. (1994, May). Recent advances in molecuar and supermolecuar characterization of cellulose and cellulose derivatives. In Macromolecular symposia (Vol. 83, No. 1, pp. 233-271). Basel: Hüthig & Wepf Verlag. Kamel, R., & Mostafa, D. M. (2015). Rutin nanostructured lipid cosmeceutical preparation with sun protective potential. Journal of Photochemistry and Photobiology B: Biology, 153, 59-66. Kang, T. Y., Yang, H. R., Zhang, J., Li, D., Lin, J., Wang, L., & Xu, X. (2013). The studies of chlorogenic acid antitumor mechanism by gene chip detection: the immune pathway gene expression. Journal of Analytical Methods in Chemistry, 2013. Kim, D. H., Lim, J. J., Lee, J. J., Jung, W. C., Shin, H. J., Lee, H. J., ... & Kim, S. (2008). Antibacterial and therapeutic effects of Houttuynia cordata ethanol extract for murine salmonellosis. Korean Journal of Environmental Agriculture, 27(2), 156-162. Kong, P., Abe, J. P., Nakagawa-Izumi, A., Kajiyama, M., & Enomae, T. (2022). Preparation of an eco-friendly antibacterial agent for food packaging containing Houttuynia cordata Thunb. extract. RSC Advances, 12(25), 16141-16152. Kumar, M., Prasad, S. K., & Hemalatha, S. J. P. R. (2014). A current update on the phytopharmacological aspects of Houttuynia cordata Thunb. Pharmacognosy Reviews, 8(15), 22. Kumnerdkhonkaen, P., Saenglee, S., Asgar, M. A., Senawong, G., Khongsukwiwat, K., & Senawong, T. (2018). Antiproliferative activities and phenolic acid content of water and ethanolic extracts of the powdered formula of Houttuynia cordata Thunb. fermented broth and Phyllanthus emblica Linn. fruit. BMC Complementary and Alternative Medicine, 18, 1-12. Lau, K. M., Lee, K. M., Koon, C. M., Cheung, C. S. F., Lau, C. P., Ho, H. M., ... & Fung, K. P. (2008). Immunomodulatory and anti-SARS activities of Houttuynia cordata Journal of Ethnopharmacology, 118(1), 79-85. Li, L., Chong, L., Huang, T., Ma, Y., Li, Y., & Ding, H. (2023). Natural products and extracts from plants as natural UV filters for sunscreens: A review. Animal Model Exp Med, 6(3), 183-195. doi:10.1002/ame2.12295 Li, X., Cheng, K., Chen, H., Li, Y., & Sun, D. (2015). Ultrasonic-assisted alkaline pretreatment of rice straw for enhancing enzymatic saccharification. Bioresource Technology, 192, 788-793. Limsakul, S., Mahatnirunkul, T., Phromma, C., Chomtong, T., Cholnakasem, N., Yimklan, S., ... & Chimupala, Y. (2023). Novel physical sunscreen from one-dimensional TiO2 nanowire: Synthesis, characterization and the effects of morphologies and particle size for use as a physical sunscreen. Nano-Structures & Nano-Objects, 35, 101027. Lin, J. Y., & Tang, C. Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101(1), 140-147. Lin, M. C., Hsu, P. C., & Yin, M. C. (2013). Protective effects of Houttuynia cordata aqueous extract in mice consuming a high saturated fat diet. Food & Function, 4(2), 322-327. Liu, Y., Yang, G., Yang, C., Shi, Z., Ru, Y., Shen, N., ... & Gao, Y. (2023). The Mechanism of Houttuynia cordata Embryotoxicity Was Explored in Combination with an Experimental Model and Network Pharmacology. Toxins, 15(1), 73. Low, Z. L., Low, D. Y. S., Tang, S. Y., Manickam, S., Tan, K. W., & Ban, Z. H. (2022). Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. Ultrasonics Sonochemistry, 90, 106176. Ma, Q., Wei, R., Wang, Z., Liu, W., Sang, Z., Li, Y., & Huang, H. (2017). Bioactive alkaloids from the aerial parts of Houttuynia cordata. Journal of ethnopharmacology, 195, 166-172. Medici, A., Saviano, L., Siciliano, A., Libralato, G., Guida, M., Previtera, L., Zarrelli, A. (2022). Octocrylene: From sunscreens to the degradation pathway during chlorination processes: Formation of Byproducts and Their Ecotoxicity Assessment. Molecules, 27(16). doi:10.3390/molecules27165286 Meng, F., Wang, G., Du, X., Wang, Z., Xu, S., & Zhang, Y. (2019). Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Composites Part B: Engineering, 160, 341-347. Mishra, C. S., & Palai, G. (2016). Manipulating light with porous silicon for investigation of porosity using finite difference time domain method. Optik, 127(3), 1195-1197. Nandi, S., & Guha, P. (2024). The effect of pre-hydrolysis treatment on properties of novel cellulosic fibre from petioles of betel leaf (Piper betle L.). Biomass Conversion and Biorefinery, 14(1), 1289-1303. Ng, H. M., Sin, L. T., Tee, T. T., Bee, S. T., Hui, D., Low, C. Y., & Rahmat, A. R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75, 176-200. Oresajo, C., Stephens, T., Hino, P. D., Law, R. M., Yatskayer, M., Foltis, P., ... & Pinnell, S. R. (2008). Protective effects of a topical antioxidant mixture containing vitamin C, Ferulic acid, and Phloretin against ultraviolet‐induced Photodamage in human skin. Journal of Cosmetic Dermatology, 7(4), 290-297. Parnsakhorn, S., Parnsakhorn, S., & Yongvanich, T. (2018). The effect of hydrochloric acid concentration and reaction time on cellulose nanofiber production from pineapple leaf. Cellulose, 25(7), 4249-4265. Philip, N. V., Koteshwara, A., Kiran, G. A., Raja, S., Subrahmanyam, V. M., & Chandrashekar, H. R. (2020). Statistical optimization for coproduction of chitinase and beta 1, 4-endoglucanase by chitinolytic Paenibacillus elgii PB1 having antifungal activity. Applied Biochemistry and Biotechnology, 191, 135-150. Phosri, S., Kiattisin, K., Intharuksa, A., Janon, R., Na Nongkhai, T., & Theansungnoen, T. (2022). Anti-aging, anti-acne, and cytotoxic activities of Houttuynia cordata extracts and phytochemicals analysis by LC-MS/MS. Cosmetics, 9(6), 136. Pires, J. R., Souza, V. G., & Fernando, A. L. (2019). Valorization of energy crops as a source for nanocellulose production–current knowledge and future prospects. Industrial Crops and Products, 140, 111642. Plackett, D., & Iotti, M. (2013). Preparation of nanofibrillated cellulose and cellulose whiskers. Biopolymer Nanocomposites: Processing, Properties, and Applications, 309-338. Pradhan, S., Rituparna, S., Dehury, H., Dhall, M., & Singh, Y. D. (2023). Nutritional profile and pharmacological aspect of Houttuynia cordata Thunb. and their therapeutic applications. Pharmacological Research-Modern Chinese Medicine, 100311. Qi, S., Zha, L., Peng, Y., Luo, W., Chen, K., Li, X., ... & Yin, D. (2022). Quality and metabolomics analysis of Houttuynia cordata based on HS-SPME/GC-MS. Molecules, 27(12), 3921. Qin, L., Zhao, X., Liu, D., et al. (2016). Comparison of enzymatic and acid hydrolysis of cassava starch for glucose production. Carbohydrate Polymers, 141, 36-43. Radice, M., Manfredini, S., Ziosi, P., Dissette, V., Buso, P., Fallacara, A., & Vertuani, S. (2016). Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia, 114, 144-162. doi:10.1016/j.fitote.2016.09.003 Szabo, O. E., & Csiszar, E. (2017). Some factors affecting efficiency of the ultrasound-aided enzymatic hydrolysis of cotton cellulose. Carbohydrate Polymers, 156, 357-363. Sun, X. F., Sun, R. C., Fowler, P., & Baird, M. S. (2004). Isolation and characterisation of cellulose obtained by a two-stage treatment with organosolv and cyanamide activated hydrogen peroxide from wheat straw. Carbohydrate Polymers, 55(4), 379-391. Tang, J., Zhou, L., Yuan, G., Liu, Y., Shi, X., Lu, Y., & Chen, D. (2023). Therapeutic effects on H1N1-induced pneumonia in mice and intestinal bacteria biotransformation of four main flavonoids from Houttuynia cordata Thunb. Journal of Pharmaceutical and Biomedical Analysis, 233, 115469. Tsai, K. C., Huang, Y. C., Liaw, C. C., Tsai, C. I., Chiou, C. T., Lin, C. J., & Su, Y. C. (2021). A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: A bedside-to-bench study. Biomedicine & Pharmacotherapy, 133, 111037. Wang, L., Xie, J., Li, X., & Sun, X. (2016). Structure and function of cellulose and hemicellulose in watermelon rind after high-pressure homogenization pretreatment. Food Chemistry, 197, 771-777. Wang, X., Lu, X., Sun, L., Zhang, X., & Liu, J. (2012). Ultrasonic-assisted alkaline pretreatment of corn stover for enhanced enzymatic digestibility. Bioresource Technology, 119, 162-167. Wang, Z., Liu, S., Zhang, Y., & Chen, H. (2019). Ultrasonic-assisted conversion of lignocellulosic biomass to sugars: A review. Ultrasonics Sonochemistry, 56, 355-366. Wei, P., Luo, Q., Hou, Y., Zhao, F., Li, F., & Meng, Q. (2023). Houttuynia cordata Thunb.: A comprehensive review of traditional applications, phytochemistry, pharmacology and safety. Phytomedicine, 155195. Wu, J., Du, X., Yin, Z., Xu, S., Xu, S., & Zhang, Y. (2019). Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Carbohydrate Polymers, 211, 49-56. Wu, Z., Deng, X., Hu, Q., Xiao, X., Jiang, J., Ma, X., & Wu, M. (2021). Houttuynia cordata thunb: an ethnopharmacological review. Frontiers in Pharmacology, 12, 714694. Y. Zhao, Y. Zhang, X. Yu, Y. Zhang, J. Wang, Q. Wu, J. Liu. (2018). Ultrasound-enhanced enzymatic hydrolysis of cellulose: A review. Ultrasonics Sonochemistry, 48: 410-418. Yang, C., Lim, W., Bazer, F. W., & Song, G. (2018). Avobenzone suppresses proliferative activity of human trophoblast cells and induces apoptosis mediated by mitochondrial disruption. Reprod Toxicol, 81, 50-57. doi:10.1016/j.reprotox.2018.07.003 Yang, H., & Chen, H. (2017). Ultrasonic-assisted pretreatment of lignocellulosic biomass. Ultrasonics Sonochemistry, 38, 160-167. Yang, Y., Fan, X., Zhang, J., et al. (2019). Optimization of dilute hydrochloric acid pretreatment for enhanced enzymatic saccharification of rice straw. BioResources, 14(1), 2126-2142. Yu, H., Wang, G., Huang, J., et al. (2019). Evaluation of the effects of HCl pretreatment on the properties of enzymatic hydrolysis lignin from bamboo. Bioresource Technology, 272, 52-58. Zhang, C., Wang, J., Ma, Y., Yu, Q., & Wang, Z. (2018). Ultrasonic-assisted acid hydrolysis of cellulose in ionic liquid. Ultrasonics Sonochemistry, 41, 771-776. Zhang, K., Sun, P., Liu, H., Shang, S., Song, J., & Wang, D. (2016). Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydrate Polymers, 138, 237-243. Zhang, S., Huang, J., Ma, Y., Liu, X., & Wang, Z. (2019). Enhancing cellulose hydrolysis by a combination of ultrasonic and microwave irradiation. Ultrasonics Sonochemistry, 57, 157-163. Zhao, Z., Li, X., Wan, W., Liu, Y., & Li, Y. (2020). Optimization of ultrasonic-assisted acid hydrolysis of corn stover for high yield production of fermentable sugars. Industrial Crops and Products, 153, 112520. Zhou, Y., Saito, T., Bergström, L., & Isogai, A. (2018). Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules, 19(2), 633-639. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93373 | - |
| dc.description.abstract | 近年來,由於疫情影響和中藥材的廣泛使用,魚腥草(Houttuynia cordata)因其抗病毒、抗發炎和抗氧化的特性而備受關注。魚腥草中的黃酮類化合物、黃酮醣苷和多酚等成分具有抗氧化特性,可以中和自由基,減少紫外線對皮膚的損傷。此外,魚腥草殘渣作為生物質能源,與化石燃料相比,燃燒時的碳排放量更低,有助於減少溫室氣體排放,實現減排目標。
本研究將分為魚腥草有效成分以及殘渣再利用兩個部分,用不同蒸煮時間的水萃液加入乳膏,觀察其吸光值的變化;另外,水萃完後的殘渣,將會使用TEMPO氧化水解,再搭配超聲波處理,觀察在不同水解時間,以及搭配不同超聲波處理時間的纖維素粒徑變化、吸光值變化以及有無抑菌效果。 研究結果顯示,水萃液會隨著蒸煮的時間拉長,吸光值以及總黃酮含量增加,且加入乳膏後仍有一樣的趨勢。殘渣再利用則是隨著蒸煮時間越長,因纖維素受熱後結構變得更不規則及疏鬆,且失去了部分的強度及熱穩定性,水解後的粒徑會變得更小,但吸光值也隨之下降,此外在此實驗中發現拉長TEMPO水解時間,縮小的幅度不是很大,故使用了水解1小時後的水解液搭配超聲波處理,隨著超聲波的時間拉長,粒徑有明顯的縮小,且因超聲波可以有效提高水中纖維素的緻密性,從而提高吸光值,提高防曬的效果。TEMPO水解後的水解液皆不具有抑菌效果,推測因水解後產生的含氧官能基與次氯酸鈉作用,消耗了次氯酸鈉,且次氯酸鈉屬於易揮發性,在反應過程中除了自身容易溢散,也間接帶走魚腥草可以抗菌抗發炎的揮發性成分。 | zh_TW |
| dc.description.abstract | In recent years, due to the pandemic and the use of traditional Chinese medicine, Houttuynia cordata has gained attention for its antiviral, anti-inflammatory, and antioxidant properties. Its flavonoids and polyphenols reduce UV skin damage. Additionally, using H. cordata residue as biomass lowers carbon emissions compared to fossil fuels, aiding in emission reduction goals.
This experiment has two parts: investigating active ingredients in H. cordata and reusing its residue. In the first part, extracts from water decoction at different boiling times will be added to creams, and absorbance changes will be observed. The residue will undergo TEMPO oxidation hydrolysis and ultrasonic treatment in the second part. The changes in cellulose particle size, absorbance, and antimicrobial effects will be observed with varying hydrolysis times and ultrasonic durations. The research shows that the absorbance and total flavonoid content of H. cordata water extract increase with longer boiling times, even after adding to cream. Regarding residue reuse, prolonged boiling causes the cellulose structure to become irregular and lose strength, leading to smaller particle sizes post-hydrolysis but lower absorbance. Extended TEMPO hydrolysis time did not significantly reduce particle size, so a 1-hour hydrolyzed solution combined with ultrasonic treatment was used. Longer ultrasonic times reduced considerably particle size and increased absorbance, enhancing the sunscreen effect. However, the hydrolyzed solutions showed no antimicrobial effect, likely due to the interaction of oxygen-containing groups with sodium hypochlorite, consuming it and carrying away volatile antimicrobial components. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:11:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-30T16:11:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract IV Contents V Figure index VIII Table index XI Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 A Brief Introduction to H. cordata 3 2.1.1 Botanical description 3 2.1.2 Component Analysis 5 2.1.3 Application of H. cordata 8 2.1.3.1 Pharmacological applications 8 2.1.3.2 Food and skincare cosmetics-related applications 10 2.2 Introduction to chemical hydrolysis of cellulose 11 2.2.1 Common types of chemical hydrolysis 11 2.2.1.1 Alkaline hydrolysis 11 2.2.1.2 Acid hydrolysis 13 2.2.1.3 Enzymatic hydrolysis 14 2.2.2 TEMPO-mediated oxidation 15 2.3 Ultrasonic hydrolysis of cellulose 18 2.3.1 Ultrasonic treatment principle 18 2.3.2 Ultrasonic-assisted chemical hydrolysis 21 2.3.3 TEMPO hydrolysis combined with ultrasonication 23 2.4 Sunscreen introduction 25 2.4.1 Physical sunscreen 27 2.4.2 Chemical sunscreen 27 2.4.3 Natural sunscreen 29 2.4.3.1 Quercetin 31 2.5 Antibacterial action 32 2.5.1 Antibacterial effect of H. cordata 33 2.5.2 Antibacterial effects of quercetin 34 Chapter 3 Material and Methods 35 3.1 Research framework 35 3.2 Experimental materials and equipment 37 3.2.1 Experimental materials 37 3.2.2 Laboratory equipment 37 3.3 Experimental procedure 38 3.3.1 Water extraction process of H. cordata 38 3.3.1.1 Obtain extract by boiling H. cordata in hot water. 38 3.3.1.2 Process of making cream 39 3.3.2 Reuse of residual after water extraction 41 3.3.2.1 TEMPO hydrolysis 41 3.3.2.2 TEMPO hydrolysis combine with ultrasonication 41 3.3.2.3 Antibacterial effects 42 3.4 Instrumental analysis 43 3.4.1 Particle size and shape analyzer 43 3.4.2 UV absorption testing 44 Chapter 4 Result and discussion 47 4.1 Water extract and homemade cream experiment 47 4.1.1 Absorbance values at different water extraction times 47 4.1.2 Total flavonoid content calculation 49 4.2 Particle size analysis of TEMPO hydrolysis residues 51 4.2.1 Non-centrifuged hydrolysate 51 4.2.1.1 Unsieved 51 4.2.1.2 Sieved 54 4.2.2 Centrifuged hydrolysate 56 4.2.2.1 Unsieved 56 4.2.2.2 Sieved 59 4.3 Absorbance test for recycling TEMPO hydrolysis residue 62 4.3.1 Non-centrifuged hydrolysate 62 4.3.1.1 Unsieved 62 4.3.1.2 Sieved 65 4.3.2 Centrifuged hydrolysate 66 4.3.2.1 Unsieved 66 4.3.2.2 Sieved 69 4.4 Particle size ultrasound of TEMPO-hydrolyzed residues. 71 4.5 Absorbance of TEMPO hydrolyzed residue with ultrasonic treatment 76 4.6 The sunscreen properties of quercetin 80 4.7 Zone of inhibition test 82 4.7.1 Residual reuse antibacterial test 82 4.7.2 Quercetin antibacterial test 85 Chapter 5 Conclusion 87 References 90 Appendix 101 | - |
| dc.language.iso | en | - |
| dc.subject | 防曬 | zh_TW |
| dc.subject | TEMPO氧化水解 | zh_TW |
| dc.subject | 超聲波 | zh_TW |
| dc.subject | 抗菌作用 | zh_TW |
| dc.subject | 魚腥草 | zh_TW |
| dc.subject | 總黃酮含量 | zh_TW |
| dc.subject | 殘渣再利用 | zh_TW |
| dc.subject | 紫外線吸收值 | zh_TW |
| dc.subject | Houttuynia cordata | en |
| dc.subject | total flavonoid content | en |
| dc.subject | residue reuse | en |
| dc.subject | sunscreen | en |
| dc.subject | Antimicrobial activity | en |
| dc.subject | ultrasonic treatment | en |
| dc.subject | TEMPO oxidation hydrolysis | en |
| dc.subject | UV absorption value | en |
| dc.title | 魚腥草生質物防曬效能 | zh_TW |
| dc.title | Sunscreen Efficacy of Biomass from Houttuynia cordata | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張資正;鄭森松 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Cheng Chang;Sen-Sung Cheng | en |
| dc.subject.keyword | 魚腥草,防曬,殘渣再利用,總黃酮含量,紫外線吸收值,TEMPO氧化水解,超聲波,抗菌作用, | zh_TW |
| dc.subject.keyword | Houttuynia cordata,sunscreen,residue reuse,total flavonoid content,UV absorption value,TEMPO oxidation hydrolysis,ultrasonic treatment,Antimicrobial activity, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202402324 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-30 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
