請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93370
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃致展 | zh_TW |
dc.contributor.advisor | Jyh-Jaan Huang | en |
dc.contributor.author | 林均庭 | zh_TW |
dc.contributor.author | Jun-Ting Lin | en |
dc.date.accessioned | 2024-07-30T16:10:43Z | - |
dc.date.available | 2024-07-31 | - |
dc.date.copyright | 2024-07-30 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-28 | - |
dc.identifier.citation | Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459.
Arai, K., Inoue, T., Ikehara, K., & Sasaki, T. (2014). Episodic subsidence and active deformation of the forearc slope along the Japan Trench near the epicenter of the 2011 Tohoku Earthquake. Earth and Planetary Science Letters, 408, 9-15. Babonneau, N., Cattaneo, A., Ratzov, G., Déverchère, J., Yelles-Chaouche, A., Lateb, T., & Bachir, R. S. (2017). Turbidite chronostratigraphy off Algiers, central Algerian margin: A key for reconstructing Holocene paleo-earthquake cycles. Marine Geology, 384, 63-80. Bao, R., Strasser, M., McNichol, A. P., Haghipour, N., McIntyre, C., Wefer, G., & Eglinton, T. I. (2018). Tectonically-triggered sediment and carbon export to the Hadal zone. Nature Communications, 9(1), 121. Bilek, S. L., & Lay, T. (2018). Subduction zone megathrust earthquakes. Geosphere, 14(4), 1468-1500. Biscaye, P. E. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7), 803-832. Boggs. (2006). Principles of Sedimentology and Stratigraphy. Pearson Education. Caputo, R., & Helly, B. (2008). The use of distinct disciplines to investigate past earthquakes. Tectonophysics, 453(1-4), 7-19. Chu, M., Bao, R., Strasser, M., Ikehara, K., Everest, J., Maeda, L., Hochmuth, K., Xu, L., McNichol, A., & Bellanova, P. (2023). Earthquake-enhanced dissolved carbon cycles in ultra-deep ocean sediments. Nature Communications, 14(1), 5427. Cnudde, V., & Boone, M. N. (2013). High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 123, 1-17. Cornard, P., Degenhart, G., Tropper, P., Moernaut, J., & Strasser, M. (2022). Application of micro-CT to deep-marine outcrop data: towards a new tool to better assess primary sedimentary structures and processes at their origin. Crone, A. J. (1988). Directions in paleoseismology. In: Wiley Online Library. Croudace, I. W., Rindby, A., & Rothwell, R. G. (2006). ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geological Society, London, Special Publications, 267(1), 51-63. Croudace, I. W., & Rothwell, R. G. (2015). Micro-XRF Studies of Sediment Cores: Applications of a Non-destructive Tool for the Environmental Sciences (Vol. 17). Springer. Cui, M. (2020). Introduction to the k-means clustering algorithm based on the elbow method. Accounting, Auditing and Finance, 1(1), 5-8. De Batist, M., Talling, P., Strasser, M., & Girardclos, S. (2017). Subaquatic paleoseismology: records of large Holocene earthquakes in marine and lacustrine sediments. Marine Geology, 100(384), 1-3. DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1-80. Doebelin, N., & Kleeberg, R. (2015). Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of applied Crystallography, 48(5), 1573-1580. Driskill, B., Pickering, J., & Rowe, H. (2018). Interpretation of high resolution XRF data from the Bone Spring and Upper Wolfcamp, Delaware Basin, USA. SPE/AAPG/SEG Unconventional Resources Technology Conference, Freundt, A., Schindlbeck-Belo, J. C., Kutterolf, S., & Hopkins, J. L. (2023). Tephra layers in the marine environment: A review of properties and emplacement processes. Fukuma, K. (1998). 22. PLIOCENE–PLEISTOCENE MAGNETOSTRATIGRAPHY OF SEDIMENTARY SEQUENCES FROM THE IRMINGER BASIN1. Proceedings of the Ocean Drilling Program: Scientific results, Ge, Z., Nemec, W., Vellinga, A. J., & Gawthorpe, R. L. (2022). How is a turbidite actually deposited? Science Advances, 8(3), eabl9124. Goldfinger, C. (2011). Submarine paleoseismology based on turbidite records. Annual Review of Marine Science, 3, 35-66. Goldfinger, C., Morey, A. E., Nelson, C. H., Gutiérrez-Pastor, J., Johnson, J. E., Karabanov, E., Chaytor, J., Eriksson, A., & Party, S. S. (2007). Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the Northern San Andreas Fault based on turbidite stratigraphy. Earth and Planetary Science Letters, 254(1-2), 9-27. Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E. B., Gutierrez-Pastor, J., Eriksson, A. T., Gracia, E., & Dunhill, G. (2012). Turbidite event history—Methods and implications for Holocene Paleoseismicity of the Cascadia Subduction Zone (2330-7102). Gribble, G. W. (2003). The diversity of naturally produced organohalogens. Chemosphere, 52(2), 289-297. Gunn, D., & Best, A. (1998). A new automated nondestructive system for high resolution multi-sensor core logging of open sediment cores. Geo-Marine Letters, 18, 70-77. Hage, S., Cartigny, M. J., Sumner, E. J., Clare, M. A., Hughes Clarke, J. E., Talling, P. J., Lintern, D. G., Simmons, S. M., Silva Jacinto, R., & Vellinga, A. J. (2019). Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophysical Research Letters, 46(20), 11310-11320. Hage, S., Hubert‐Ferrari, A., Lamair, L., Avşar, U., El Ouahabi, M., Van Daele, M., Boulvain, F., Ali Bahri, M., Seret, A., & Plenevaux, A. (2017). Flow dynamics at the origin of thin clayey sand lacustrine turbidites: Examples from Lake Hazar, Turkey. Sedimentology, 64(7), 1929-1956. Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58-61. Hennekam, R., & de Lange, G. (2012). X‐ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high‐resolution paleoenvironmental records. Limnology and Oceanography: Methods, 10(12), 991-1003. Herrendörfer, R., Van Dinther, Y., Gerya, T., & Dalguer, L. A. (2015). Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone. Nature Geoscience, 8(6), 471-474. Hirano, N., Takahashi, E., Yamamoto, J., Abe, N., Ingle, S. P., Kaneoka, I., Hirata, T., Kimura, J.-I., Ishii, T., & Ogawa, Y. (2006). Volcanism in response to plate flexure. Science, 313(5792), 1426-1428. Hopkins, J. L., Wysoczanski, R. J., Orpin, A. R., Howarth, J. D., Strachan, L. J., Lunenburg, R., McKeown, M., Ganguly, A., Twort, E., & Camp, S. (2020). Deposition and preservation of tephra in marine sediments at the active Hikurangi subduction margin. Quaternary Science Reviews, 247, 106500. Howarth, J. D., Orpin, A. R., Kaneko, Y., Strachan, L. J., Nodder, S. D., Mountjoy, J. J., Barnes, P. M., Bostock, H. C., Holden, C., & Jones, K. (2021). Calibrating the marine turbidite palaeoseismometer using the 2016 Kaikōura earthquake. Nature Geoscience, 14(3), 161-167. Huang, J.-J., Huh, C.-A., Wei, K.-Y., Löwemark, L., Lin, S.-F., Liao, W.-H., Yang, T.-N., Song, S.-R., Lee, M.-Y., & Su, C.-C. (2016). Disentangling natural and anthropogenic signals in lacustrine records: An example from the Ilan Plain, NE Taiwan. Frontiers in Earth Science, 4, 98. Huang, J.-J. S., Wei, K.-Y., Löwemark, L., Song, S.-R., Chuang, C.-K., Yang, T.-N., Lee, M.-Y., Chen, Y.-B., Horng, C.-S., & Chen, K.-H. (2019). What caused the cultural hiatus in the Iron-Age Kiwulan Site, northeastern Taiwan? Quaternary International, 514, 186-194. Ikehara, K., Kanamatsu, T., Nagahashi, Y., Strasser, M., Fink, H., Usami, K., Irino, T., & Wefer, G. (2016). Documenting large earthquakes similar to the 2011 Tohoku-oki earthquake from sediments deposited in the Japan Trench over the past 1500 years. Earth and Planetary Science Letters, 445, 48-56. Ikehara, K., Ohkushi, K., Noda, A., Danhara, T., & Yamashita, T. (2013). A new local marine reservoir correction for the last deglacial period in the Sanriku region, northwestern North Pacific, based on radiocarbon dates from the Towada-Hachinohe (To-H) tephra. Quat Res, 52(4), 127-137. Ikehara, K., Strasser, M., Everest, J., Maeda, L., & Hochmuth, K. (2023). Expedition 386 preliminary report: Japan trench Paleoseismology. Preliminary Report, 386. Ikehara, K., Usami, K., Kanamatsu, T., Arai, K., Yamaguchi, A., & Fukuchi, R. (2018). Spatial variability in sediment lithology and sedimentary processes along the Japan Trench: use of deep-sea turbidite records to reconstruct past large earthquakes. Tsunamis: Geology, Hazards and Risks. Ikehara, K., Usami, K., Kanamatsu, T., Danhara, T., & Yamashita, T. (2017). Three important Holocene tephras off the Pacific coast of the Tohoku region, Northeast Japan: Implications for correlating onshore and offshore event deposits. Quaternary International, 456, 138-153. Imai, N., Terashima, S., Ohta, A., Mikoshiba, M., Okai, T., Tachibana, Y., Ikehara, K., Katayama, H., Noda, A., Togashi, S., Matsuhisa, Y., Kanai, Y., & Kamioka, H. (2010). Geochemical Map of Sea and Land of Japan. Geological Survey of Japan, AIST. Ishiwatari, R., Yamada, K., Matsumoto, K., Naraoka, H., Yamamoto, S., & Handa, N. (2000). Source of organic matter in sinking particles in the Japan Trench: molecular composition and carbon isotopic analyses. Dynamics and Characterization of Marine Organic Matter, 141-168. Kanamatsu, T., Ikehara, K., & Hsiung, K.-H. (2022). Stratigraphy of deep-sea marine sediment using paleomagnetic secular variation: refined dating of turbidite relating to giant earthquake in Japan Trench. Marine Geology, 443, 106669. Kanamatsu, T., Ikehara, K., & Hsiung, K.-H. (2023). Submarine paleoseismology in the Japan Trench of northeastern Japan: turbidite stratigraphy and sedimentology using paleomagnetic and rock magnetic analyses. Progress in Earth and Planetary Science, 10(1), 16. Kawamura, K., Sasaki, T., Kanamatsu, T., Sakaguchi, A., & Ogawa, Y. (2012). Large submarine landslides in the Japan Trench: A new scenario for additional tsunami generation. Geophysical Research Letters, 39(5). Kimbrough, D. L., Abbott, P. L., Gastil, R. G., & Hamner, P. J. (1997). Provenance investigations using magnetic susceptibility. Journal of Sedimentary Research, 67(5), 879-883. Kioka, A., Schwestermann, T., Moernaut, J., Ikehara, K., Kanamatsu, T., Eglinton, T. I., & Strasser, M. (2019b). Event stratigraphy in a hadal oceanic trench: the Japan trench as sedimentary archive recording recurrent giant subduction zone earthquakes and their role in organic carbon export to the deep sea. Frontiers in Earth Science, 7, 319. Kioka, A., Schwestermann, T., Moernaut, J., Ikehara, K., Kanamatsu, T., McHugh, C. M., dos Santos Ferreira, C., Wiemer, G., Haghipour, N., & Kopf, A. J. (2019a). Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Scientific Reports, 9(1), 1553. Kneller, B. C., & McCaffrey, W. D. (2003). The interpretation of vertical sequences in turbidite beds: the influence of longitudinal flow structure. Journal of Sedimentary Research, 73(5), 706-713. Lay, T., Fujii, Y., Geist, E., Koketsu, K., Rubinstein, J., Sagiya, T., & Simons, M. (2013). Introduction to the special issue on the 2011 Tohoku earthquake and tsunami. Bulletin of the Seismological Society of America, 103(2B), 1165-1170. Lee, A.-S., Huang, J.-J. S., Burr, G., Kao, L. C., Wei, K.-Y., & Liou, S. Y. H. (2019). High resolution record of heavy metals from estuary sediments of Nankan River (Taiwan) assessed by rigorous multivariate statistical analysis. Quaternary International, 527, 44-51. Lehu, R., Lallemand, S., Ratzov, G., Babonneau, N., Hsu, S.-K., Lin, A. T., & Dezileau, L. (2016). An attempt to reconstruct 2700 years of seismicity using deep-sea turbidites offshore eastern Taiwan. Tectonophysics, 692, 309-324. Löwemark, L., Bloemsma, M., Croudace, I., Daly, J. S., Edwards, R. J., Francus, P., Galloway, J. M., Gregory, B. R., Huang, J.-J. S., & Jones, A. F. (2019). Practical guidelines and recent advances in the Itrax XRF core-scanning procedure. Quaternary International, 514, 16-29. Marsaglia, K., Milliken, K., & Doran, L. (2013). IODP digital reference for smear slide analysis of marine mud. Part 1: Methodology and atlas of siliciclastic and volcanogenic components. Integrated Ocean Drilling Program Technical Note, 1. Marsaglia, K., Tentori, D., Milliken, K., Leckie, R. M., & Doran, L. (2014). IODP digital reference for smear slide analysis of marine mud part 2: methodolgy and atlas of biogenic components. McCalpin, J. P., & Nelson, A. R. (2009). Introduction to paleoseismology. International Geophysics, 95, 1-27. McHugh, C. M., Gurung, D., Giosan, L., Ryan, W. B., Mart, Y., Sancar, U., Burckle, L., & Cagatay, M. N. (2008). The last reconnection of the Marmara Sea (Turkey) to the World Ocean: A paleoceanographic and paleoclimatic perspective. Marine Geology, 255(1-2), 64-82. McHugh, C. M., Kanamatsu, T., Seeber, L., Bopp, R., Cormier, M.-H., & Usami, K. (2016). Remobilization of surficial slope sediment triggered by the AD 2011 Mw 9 Tohoku-Oki earthquake and tsunami along the Japan Trench. Geology, 44(5), 391-394. McHugh, C. M., Seeber, L., Rasbury, T., Strasser, M., Kioka, A., Kanamatsu, T., Ikehara, K., & Usami, K. (2020). Isotopic and sedimentary signature of megathrust ruptures along the Japan subduction margin. Marine Geology, 428, 106283. Mimura, N., Yasuhara, K., Kawagoe, S., Yokoki, H., & Kazama, S. (2011). Damage from the Great East Japan Earthquake and Tsunami-a quick report. Mitigation and Adaptation Strategies for Global Change, 16, 803-818. Moernaut, J. (2020). Time-dependent recurrence of strong earthquake shaking near plate boundaries: A lake sediment perspective. Earth-Science Reviews, 210, 103344. Moernaut, J., Daele, M. V., Heirman, K., Fontijn, K., Strasser, M., Pino, M., Urrutia, R., & De Batist, M. (2014). Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile. Journal of Geophysical Research: Solid Earth, 119(3), 1607-1633. Moernaut, J., Van Daele, M., Fontijn, K., Heirman, K., Kempf, P., Pino, M., Valdebenito, G., Urrutia, R., Strasser, M., & De Batist, M. (2018). Larger earthquakes recur more periodically: New insights in the megathrust earthquake cycle from lacustrine turbidite records in south-central Chile. Earth and Planetary Science Letters, 481, 9-19. Moernaut, J., Van Daele, M., Strasser, M., Clare, M. A., Heirman, K., Viel, M., Cardenas, J., Kilian, R., de Guevara, B. L., & Pino, M. (2017). Lacustrine turbidites produced by surficial slope sediment remobilization: a mechanism for continuous and sensitive turbidite paleoseismic records. Marine Geology, 384, 159-176. Molenaar, A., Moernaut, J., Wiemer, G., Dubois, N., & Strasser, M. (2019). Earthquake impact on active margins: tracing surficial remobilization and seismic strengthening in a slope sedimentary sequence. Geophysical Research Letters, 46(11), 6015-6023. Molenaar, A., Van Daele, M., Huang, J.-J. S., Strasser, M., De Batist, M., Pino, M., Urrutia, R., & Moernaut, J. (2022). Disentangling factors controlling earthquake-triggered soft-sediment deformation in lakes. Sedimentary Geology, 438, 106200. Nakamura, Y., Kodaira, S., Miura, S., Regalla, C., & Takahashi, N. (2013). High‐resolution seismic imaging in the Japan Trench axis area off Miyagi, northeastern Japan. Geophysical Research Letters, 40(9), 1713-1718. Patton, J., Goldfinger, C., Morey, A., Romsos, C., Black, B., & Djadjadihardja, Y. (2013). Seismoturbidite record as preserved at core sites at the Cascadia and Sumatra–Andaman subduction zones. Natural Hazards and Earth System Sciences, 13(4), 833-867. Philibosian, B., & Meltzner, A. J. (2020). Segmentation and supercycles: A catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide. Quaternary Science Reviews, 241, 106390. Pickering, K. T., & Hiscott, R. N. (2015). Deep Marine Systems: Processes, Deposits, Environments, Tectonics and Sedimentation. John Wiley & Sons. Piper, D. J., & Normark, W. R. (2009). Processes that initiate turbidity currents and their influence on turbidites: a marine geology perspective. Journal of Sedimentary Research, 79(6), 347-362. Polonia, A., Bonetti, C., Bonetti, J., Çağatay, M., Gallerani, A., Gasperini, L., Nelson, C., & Romano, S. (2021). Deciphering Co‐Seismic Sedimentary Processes in the Mediterranean Sea Using Elemental, Organic Carbon, and Isotopic Data. Geochemistry, Geophysics, Geosystems, 22(7), e2020GC009446. Polonia, A., Melis, R., Galli, P., Colizza, E., Insinga, D., & Gasperini, L. (2023). Large earthquakes along slow converging plate margins: Calabrian Arc paleoseismicity based on the submarine turbidite record. Geoscience Frontiers, 14(5), 101612. Polonia, A., Nelson, C., Romano, S., Vaiani, S. C., Colizza, E., Gasparotto, G., & Gasperini, L. (2017). A depositional model for seismo-turbidites in confined basins based on Ionian Sea deposits. Marine Geology, 384, 177-198. Polonia, A., Panieri, G., Gasperini, L., Gasparotto, G., Bellucci, L. G., & Torelli, L. (2013). Turbidite paleoseismology in the Calabrian Arc subduction complex (Ionian Sea). Geochemistry, Geophysics, Geosystems, 14(1), 112-140. Pouderoux, H., Proust, J.-N., & Lamarche, G. (2014). Submarine paleoseismology of the northern Hikurangi subduction margin of New Zealand as deduced from turbidite record since 16 ka. Quaternary Science Reviews, 84, 116-131. Praet, N., Van Daele, M., Collart, T., Moernaut, J., Vandekerkhove, E., Kempf, P., Haeussler, P. J., & De Batist, M. (2020). Turbidite stratigraphy in proglacial lakes: Deciphering trigger mechanisms using a statistical approach. Sedimentology, 67(5), 2332-2359. Rajendran, K. (2013). On the recurrence of great subduction zone earthquakes. Current Science, 880-892. Rebolledo, L., Sepúlveda, J., Lange, C. B., Pantoja, S., Bertrand, S., Hughen, K., & Figueroa, D. (2008). Late Holocene marine productivity changes in Northern Patagonia-Chile inferred from a multi-proxy analysis of Jacaf channel sediments. Estuarine, Coastal and Shelf Science, 80(3), 314-322. Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. Rikitake, T. (1976). Recurrence of great earthquakes at subduction zones. Tectonophysics, 35(4), 335-362. Rothwell, R. G., & Croudace, I. W. (2015). Twenty years of XRF core scanning marine sediments: what do geochemical proxies tell us? Micro-XRF Studies of Sediment Cores: Applications of a Non-destructive Tool for the Environmental Sciences, 25-102. Rothwell, R. G., Hoogakker, B., Thomson, J., Croudace, I. W., & Frenz, M. (2006). Turbidite emplacement on the southern Balearic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stages 1–3: an application of ITRAX XRF scanning of sediment cores to lithostratigraphic analysis. Geological Society, London, Special Publications, 267(1), 79-98. Sabatier, P., Moernaut, J., Bertrand, S., Van Daele, M., Kremer, K., Chaumillon, E., & Arnaud, F. (2022). A review of event deposits in lake sediments. Quaternary, 5(3), 34. Saino, T., Shang, S., Mino, Y., Suzuki, K., Nomura, H., Saitoh, S.-i., Miyake, H., Masuzawa, T., & Harada, K. (1998). Short term variability of particle fluxes and its relation to variability in sea surface temperature and chlorophyll a field detected by Ocean Color and Temperature Scanner (OCTS) off Sanriku, northwestern North Pacific in the spring of 1997. Journal of OOceanography, 54, 583-592. Santanach, P., & Masana, E. (2001). Prospects for paleoseismology in Spain. Acta Geológica Hispánica, 193-196. Satake, K. (2015). Geological and historical evidence of irregular recurrent earthquakes in Japan. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2053), 20140375. Sawai, Y., Namegaya, Y., Okamura, Y., Satake, K., & Shishikura, M. (2012). Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology. Geophysical Research Letters, 39(21). Sawai, Y., Namegaya, Y., Tamura, T., Nakashima, R., & Tanigawa, K. (2015). Shorter intervals between great earthquakes near Sendai: Scour ponds and a sand layer attributable to AD 1454 overwash. Geophysical Research Letters, 42(12), 4795-4800. Schwestermann, T., Eglinton, T. I., Haghipour, N., McNichol, A. P., Ikehara, K., & Strasser, M. (2021). Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench. Earth and Planetary Science Letters, 563, 116870. Schwestermann, T., Huang, J., Konzett, J., Kioka, A., Wefer, G., Ikehara, K., Moernaut, J., Eglinton, T. I., & Strasser, M. (2020). Multivariate statistical and multiproxy constraints on earthquake‐triggered sediment remobilization processes in the central Japan Trench. Geochemistry, Geophysics, Geosystems, 21(6), e2019GC008861. Sequeiros, O. E., Bolla Pittaluga, M., Frascati, A., Pirmez, C., Masson, D. G., Weaver, P., Crosby, A. R., Lazzaro, G., Botter, G., & Rimmer, J. G. (2019). How typhoons trigger turbidity currents in submarine canyons. Scientific reports, 9(1), 9220. Shanmugam, G. (2006). Deep-water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs. Elsevier. Stevenson, C. J., Peakall, J., Hodgson, D. M., Bell, D., & Privat, A. (2020). TB or not TB: banding in turbidite sandstones. Journal of Sedimentary Research, 90(8), 821-842. Stow, D., & Smillie, Z. (2020). Distinguishing between deep-water sediment facies: turbidites, contourites and hemipelagites. Geosciences, 10(2), 68. Stow, D. A., & Shanmugam, G. (1980). Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology, 25(1-2), 23-42. Strasser, M., Ikehara, K., & Cotterill, C. (2019). Expedition 386 scientific prospectus: Japan trench paleoseismology. Scientific Prospectus, 386. Strasser, M., Ikehara, K., Everest, J., Maeda, L., Hochmuth, K., Grant, H., Stewart, M., Okutsu, N., Sakurai, N., Yokoyama, T., Bao, R., Bellanova, P., Brunet, M., Cai, Z., Cattaneo, A., Hsiung, K.-H., Huang, J.-J., Ishizawa, T., Itaki, T., Jitsuno, K., Johnson, J.E., Kanamatsu, T., Keep, M., Kioka, A., Kölling, M., Luo, M., März, C., McHugh, C., Micallef, A., Nagahashi, Y., Pandey, D.K., Proust, J.-N., Rasbury, E.T., Riedinger, N., Satoguchi, Y., Sawyer, D.E., Seibert, C., Silver, M., Straub, S.M., Virtasalo, J., Wang, Y., Wu, T.-W., Zellers S.D. (2023). Expedition 386 summary. https://doi.org/https://doi.org/10.14379/iodp.proc.386.101.2023 Strasser, M., Ikehara, K., Pizer, C., Itaki, T., Satoguchi, Y., Kioka, A., McHugh, C., Proust, J.-N., Sawyer, D., Team, I. E. E. M., & Party, I. E. S. (submitted). Japan Trench Event Stratigraphy: First Results from IODP Giant Piston Coring in a deep-sea trench to advance subduction zone paleoseismology. Marine Geology. Strasser, M., Monecke, K., Schnellmann, M., & Anselmetti, F. S. (2013). Lake sediments as natural seismographs: A compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation. Sedimentology, 60(1), 319-341. Su, C.-C., Tseng, J.-Y., Hsu, H.-H., Chiang, C.-S., Yu, H.-S., Lin, S., & Liu, J. T. (2012). Records of submarine natural hazards off SW Taiwan. Geological Society, London, Special Publications, 361(1), 41-60. Talling, P. (2021). Fidelity of turbidites as earthquake records, Nat. Geosci., 14, 113–116. In. Talling, P. J. (2014). On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Marine Geology, 352, 155-182. Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7), 1937-2003. Tanaka, A., Nakano, T., & Ikehara, K. (2011). X-ray computerized tomography analysis and density estimation using a sediment core from the Challenger Mound area in the Porcupine Seabight, off Western Ireland. Earth, Planets and Space, 63, 103-110. Tjallingii, R., Röhl, U., Kölling, M., & Bickert, T. (2007). Influence of the water content on X‐ray fluorescence core‐scanning measurements in soft marine sediments. Geochemistry, Geophysics, Geosystems, 8(2). Usami, K., Ikehara, K., Kanamatsu, T., & McHugh, C. M. (2018). Supercycle in great earthquake recurrence along the Japan Trench over the last 4000 years. Geoscience Letters, 5(1), 1-12. Vacek, F., Hladil, J., & Schnabl, P. (2010). Stratigraphic correlation potential of magnetic susceptibility and gamma-ray spectrometric variations in calciturbiditic facies (Silurian-Devonian boundary, Prague Synclinorium, Czech Republic). Geologica Carpathica, 61(4), 257. Van Daele, M., Cnudde, V., Duyck, P., Pino, M., Urrutia, R., & De Batist, M. (2014). Multidirectional, synchronously‐triggered seismo‐turbidites and debrites revealed by X‐ray computed tomography (CT). Sedimentology, 61(4), 861-880. Van Daele, M., Meyer, I., Moernaut, J., De Decker, S., Verschuren, D., & De Batist, M. (2017). A revised classification and terminology for stacked and amalgamated turbidites in environments dominated by (hemi) pelagic sedimentation. Sedimentary Geology, 357, 72-82. Vandekerkhove, E., Van Daele, M., Praet, N., Cnudde, V., Haeussler, P. J., & De Batist, M. (2020). Flood‐triggered versus earthquake‐triggered turbidites: A sedimentological study in clastic lake sediments (Eklutna Lake, Alaska). Sedimentology, 67(1), 364-389. von Huene, R., Langseth, M., Nasu, N., & Okada, H. (1980). Summary Japan trench transect. Initial Reports of the Deep Sea Drilling Project, 56, 1169-1186. Wallace, R. E. (1981). Active faults, paleoseismology, and earthquake hazards in the western United States. Earthquake Prediction: an International Review, 4, 209-216. Wang, M., Zheng, H., Xie, X., Fan, D., Yang, S., Zhao, Q., & Wang, K. (2011). A 600-year flood history in the Yangtze River drainage: comparison between a subaqueous delta and historical records. Chinese Science Bulletin, 56, 188-195. Weaver, P., & Schultheiss, P. (1990). Current methods for obtaining, logging and splitting marine sediment cores. Marine Geophysical Researches, 12(1), 85-100. Webster, J. M., Beaman, R. J., Puga-Bernabéu, Á., Ludman, D., Renema, W., Wust, R. A., George, N. P., Reimer, P. J., Jacobsen, G. E., & Moss, P. (2012). Late Pleistocene history of turbidite sedimentation in a submarine canyon off the northern Great Barrier Reef, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 331, 75-89. Weltje, G. J., Bloemsma, M., Tjallingii, R., Heslop, D., Röhl, U., & Croudace, I. W. (2015a). Prediction of geochemical composition from XRF core scanner data: a new multivariate approach including automatic selection of calibration samples and quantification of uncertainties. Micro-XRF Studies of Sediment Cores: Applications of a Non-destructive Tool for the Environmental Sciences, 507-534. Weltje, G. J., Bloemsma, M., Tjallingii, R., Heslop, D., Röhl, U., & Croudace, I. W. (2015b). Prediction of geochemical composition from XRF core scanner data: a new multivariate approach including automatic selection of calibration samples and quantification of uncertainties. In Micro-XRF Studies of Sediment Cores (pp. 507-534). Springer. Weltje, G. J., & Tjallingii, R. (2008). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters, 274(3-4), 423-438. Wu, J. (2012). Cluster analysis and K-means clustering: an introduction. In Advances in K-means Clustering (pp. 1-16). Springer. Yeats, R. S., & Prentice, C. S. (1996). Introduction to special section: Paleoseismology. Journal of Geophysical Research: Solid Earth, 101(B3), 5847-5853. Zhao, D., Huang, Z., Umino, N., Hasegawa, A., & Kanamori, H. (2011). Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku‐oki earthquake (Mw 9.0). Geophysical Research Letters, 38(17). Zhao, D., Yanada, T., Hasegawa, A., Umino, N., & Wei, W. (2012). Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophysical Journal International, 190(2), 816-828. Ziegler, M., Jilbert, T., de Lange, G. J., Lourens, L. J., & Reichart, G. J. (2008). Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochemistry, Geophysics, Geosystems, 9(5). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93370 | - |
dc.description.abstract | 諸如2011年東日本大地震等巨型隱沒帶地震對人類社會具有深遠的影響,這類地震通常具有較長的再現週期,短時間尺度的儀器及歷史記錄常無法一窺其再現模型之全貌。為了建立可信的長時間古地震記錄,國際海洋發現計畫 (IODP)第386航次針對日本海溝沿線之11個盆地採集了超過800公尺的沉積物岩芯,其中的事件層記錄對於重建該區古地震的時空分布至關重要。因此,本研究利用X光螢光掃描結合多變量統計之主成分和群集分析,在中部日本海溝建立了精確且詳盡的化學地層對比。其中,在同個盆地的岩芯M0083D和M0089D共有八個事件層可被對比,這些事件層可被分為兩類,分別為擁有較高的鈣和鍶且其變化趨勢為向上漸少的事件層,以及擁有較高的矽、銣、鉀且無向上減少趨勢的事件層。這兩類不同的化學特徵指示著事件層成分和沉積過程的差異。而在岩芯M0089D與跨盆地岩芯M0090D的化學地層對比結果顯示,儘管兩根岩芯的八個事件層可被對比,但其元素趨勢和內部結構有所差異,這代表事件層的來源在空間上相似,但其侵蝕和搬運的過程有所不同。此外,不同時間沉積的事件層擁有不同的化學特徵,這不僅暗示了其時間上的來源差異,且進一步指示觸發這些濁流的機制可能是表層沉積物再搬運,而非海底山崩。因此,透過化學地層對比可以識別來自同一事件的沉積物,這證明了化學地層對比在確定事件地層來源上的實用性。在此基礎之上,岩芯中事件層的厚度與空間分布可用以揭示濁流的流動路徑,並有助於確定古地震的可能震央。例如,有高含量矽、銣、鉀的事件層向南變薄,暗示濁流可能源於北方;而有較高含量鈣和鍶的事件層在南方顯著增厚,表明震央可能位於南方。本研究採用X光螢光掃描和多變量統計方法進行精確的化學地層對比,不僅揭示了中部日本海溝事件層的沉積過程和來源,且深化了我們對該地區古地震時空分佈的理解。此外,本研究也為全球其他類似地質環境的古地震學研究提供了重要參考。 | zh_TW |
dc.description.abstract | Megathrust earthquakes in subduction zones, such as the AD 2011 Mw 9.1 Tohoku-oki earthquake, have a significant impact on human society. Such earthquakes usually occur cyclically with long recurrence intervals, which makes it challenging to reconstruct recurrence models by short instrumental and historical records. Holding the mission to extend the long-term giant paleo-earthquake record over wide spatial extents, the International Ocean Discovery Program (IODP) Expedition 386, Japan Trench Paleoseismology, retrieved over 800 meters of sediment cores containing event deposits from 11 trench-fill basins along the Japan Trench. To establish reliable paleo-earthquake records, the spatiotemporal distributions of event deposits through precise correlation are pivotal. This study examines chemostratigraphic correlations in the central Japan Trench, focusing on cores M0083D and M0089D in the northern basin and M0090D in the southern basin. Employing X-ray Fluorescence Core Scanning (XRF-CS) along with Principal Component Analysis (PCA) and Cluster Analysis (CA), efficient and high-resolution chemostratigraphic correlations were achieved. Within the same basin, eight thick event deposits in M0083D are chemically correlated with those in M0089D. These event deposits can be characterized by higher Ca and Sr with decreasing trends upward, or higher Si, Rb, and K without decreasing trends upward, indicating different compositions and depositional processes of the turbidity current. Across basins, eight event deposits in M0090D showed the same cluster sequence but different elemental trends and internal structures compared to their correlated ones in M0089D, suggesting that while the source of the deposits is spatially similar, the erosion and transport processes may be different. On the other hand, the distinct chemical characteristics of event deposits from different times suggest temporal source differences along stratigraphic sequences. These temporal differences may indicate surficial sediment remobilization rather than landslides as the primary triggering mechanism of turbidity currents. This concept may further confirm the reliability of chemostratigraphic correlation for event-stratigraphic correlation especially in the context of paleoseismology. The relationship between event deposit thickness and spatial distribution across the cores can be further used to indicate the paths of turbidity currents and, thus, potential rupture areaof paleo-earthquakes. Southward thinning of higher Si, Rb, and K event deposits suggests a northern source, while thicker Ca and Sr deposits in the southern core imply southern rupture area. This study therefore establishes a robust chemostratigraphic correlation that enhances our understanding of the spatiotemporal distribution of paleo-earthquakes in the central Japan Trench and provides valuable insights for paleoseismology research in similar geological settings globally. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:10:43Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-30T16:10:43Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv List of Figures x List of Tables xiv 1. Introduction 1 2. Literature Review 6 2.1 Subduction Zone Submarine Paleoseismology 6 2.2 Event Deposits Identification and Characterization 9 2.3 Event-Stratigraphic Correlation 13 3. Background 18 3.1 Geological Setting 18 3.2 Japan Trench Paleoseismology 21 3.3 Study Sites 24 4. Method 30 4.1 X-ray Fluorescence Core Scanning (XRF-CS) 30 4.2 Scanning Campaign 33 4.2.1 The Procedure of XRF-CS 33 4.2.2 Incomplete Sediment Part Exclusion 33 4.2.3 Duplicate Scanning 34 4.2.4 Spectrum Fitting 35 4.3 Quality Control 35 4.3.1 Depth Correction and Invalid Data Removal 36 4.3.2 Element Selection 36 4.3.3 Incomplete Sediment Parts Removal 37 4.4 Data Transformation 39 4.4.1 Dividing by the Mean (dmean) 39 4.4.2 Centred Log-ratio (clr) 40 4.5 Multivariate Statistics 42 4.5.1 Principal Component Analysis (PCA) 42 4.5.2 Cluster Analysis (CA) 43 5. Result 44 5.1 Quality Control 44 5.1.1 Element Selection 45 5.1.2 Incomplete Sediment Parts Removal 51 5.2 Data Transformation 53 5.3 Dimensionality and Cluster Selection in Multivariate Statistics 59 5.3.1 Dimensionality Selection in PCA 59 5.3.2 Cluster Selection in K-means Clustering 62 5.4 Event Deposit Identification 65 5.5 Results of M0083D 67 5.5.1 Background Sediments (Orange Cluster) in M0083D 71 5.5.2 Mn Peaks (Green Cluster) in M0083D 72 5.5.3 Event Deposit 83-TD1 (Purple Cluster) 74 5.5.4 Event Deposit 83-TD2 (Blue Cluster) 76 5.5.5 Event Deposit 83-TD3 (Red Cluster) 78 5.5.6 Event Deposit 83-TD4 (Red Cluster) 80 5.5.7 Event Deposit 83-TD5 (Red and Blue Clusters) 82 5.5.8 Event Deposit 83-TD6 (Purple Cluster) 84 5.5.9 Event Deposit 83-TD7 (Red Cluster) 86 5.5.10 Event Deposit 83-TD8 (Blue Cluster) 88 5.6 Results of M0089D 92 5.6.1 Background Sediments (Orange/Purple/Red Clusters) in M0089D 96 5.6.2 Mn Peaks (Green Cluster) in M0089D 96 5.6.3 Overview of Event Deposits in M0089D 97 5.6.4 Event Deposit 89-TD1 (Purple Cluster) 98 5.6.5 Event Deposit 89-TD2 (Purple and Blue Cluster) 100 5.6.6 Event Deposit 89-TD3 (Red Cluster) 102 5.6.7 Event Deposit 89-TD4 (Red and Purple/Blue Cluster) 104 5.6.8 Event Deposit 89-TD5 (Red and Blue Clusters) 106 5.6.9 Event Deposit 89-TD6 (Purple Cluster with Blue Cluster Base) 108 5.6.10 Event Deposit 89-TD7 (Red Cluster) 110 5.6.11 Event Deposit 89-TD8 (Blue Cluster) 112 5.7 Results of M0090D 115 5.7.1 Background Sediments (Orange/Red Clusters) and Mn Peaks (Green Cluster) in M0090D 119 5.7.2 Event Deposit 90-TD1 (Blue Cluster) 120 5.7.3 Event Deposit 90-TD2 (Blue Cluster) 122 5.7.4 Event Deposit 90-TD3 (Red Cluster) 124 5.7.5 Event Deposit 90-TD4 (Red and Purple Cluster) 126 5.7.6 Event Deposit 90-TD5 (Red Cluster) 128 5.7.7 Event Deposit 90-TD6 (Blue Cluster with Purple Cluster Top) 130 5.7.8 Event Deposit 90-TD7 (Red Cluster) 132 5.7.9 Event Deposit 90-TD8 (Blue Cluster) 133 5.8 Chemostratigraphic Correlation within a Basin - M0083D and M0089D 136 5.8.1 Multivariate Statistics Result of M0083D and M0089D 137 5.8.2 Chemostratigraphic Correlation Results of M0083D and M0089D 140 5.9 Chemostratigraphic Correlation across Basins - M0089D and M0090D 144 5.9.1 Multivariate Statistics Result of M0089D and M0090D 145 5.9.2 Chemostratigraphic Correlation Results of M0089D and M0090D 150 6. Discussion 155 6.1 Feasibility of XRF-CS Combined with Multivariate Statistics for Chemostratigraphic Correlation 156 6.1.1 Feasibility of Chemostratigraphic Correlation within a Site: M0083B and M0083D 157 6.1.2 Feasibility of Chemostratigraphic Correlation within a Basin: M0083D and M0089D 157 6.1.3 Feasibility of Chemostratigraphic Correlation across Basins: M0089D and M0090D 158 6.1.4 Advantages 159 6.1.5 Limitation 160 6.2 Application of Chemostratigraphy – Example of Sample Strategy 163 6.3 Composition of Event Deposits and Background Sediments 169 6.3.1 Composition of Background Sediments 169 6.3.2 Composition of Event Deposit in Different Clusters 171 6.3.3 Differentiation between Homogeneous Clay of Event Deposit and Background Sediments 173 6.4 Possible Depositional Processes of Event Deposits 174 6.4.1 Type 1: 83-TD1, 89-TD1, 83-TD2, 89-TD2, 83-TD6, and 89-TD6 175 6.4.2 Type 2: 83-TD8 and 89-TD8 177 6.4.3 Type 3: 83-TD3, 89-TD3, 83-TD4, 89-TD4, 83-TD5, 89-TD5, 83-TD7, and 89-TD7 178 6.5 Possible Temporal Source Differences Inferred by Chemical Characteristics Relationships of Event Deposits 180 6.6 Event-stratigraphic Correlation and Inferred Possible Spatial Distribution of Paleo-earthquakes 183 6.6.1 Correlating Event Deposits with Earthquakes 183 6.6.2 The Spatial Distribution of Earthquake Inferred by Thickness of Correlated Event Deposits 187 7. Conclusion 196 8. References 201 | - |
dc.language.iso | en | - |
dc.title | X光螢光掃描結合多變量統計之化學地層對比在中部日本海溝之古地震學應用 | zh_TW |
dc.title | XRF-CS-based Multivariate Statistical Chemostratigraphic Correlation for Submarine Paleoseismology in the Central Japan Trench | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | Michael Strasser;池原研;張詠斌;蘇志杰 | zh_TW |
dc.contributor.oralexamcommittee | Michael Strasser;Ken Ikehara;Yuan-Pin Chang;Chih-Chieh Su | en |
dc.subject.keyword | X光螢光掃描,多變量統計,對比,日本海溝,古地震學, | zh_TW |
dc.subject.keyword | XRF Core Scanning,Multivariate Statistics,Correlation,Japan Trench,Submarine Paleoseismology, | en |
dc.relation.page | 217 | - |
dc.identifier.doi | 10.6342/NTU202401026 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-07-28 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 38.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。