請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93365完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | 林侑辰 | zh_TW |
| dc.contributor.author | You-Chen Lin | en |
| dc.date.accessioned | 2024-07-30T16:09:07Z | - |
| dc.date.available | 2024-07-31 | - |
| dc.date.copyright | 2024-07-30 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-23 | - |
| dc.identifier.citation | Abraham, K., El-Khatib, A. H., Schwerdtle, T., & Monien, B. H. (2021). Perfluorobutanoic acid (PFBA): No high-level accumulation in human lung and kidney tissue. International Journal of Hygiene and Environmental Health, 237, 113830.
Artioli, Y. (2008). Adsorption. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 60-65). Academic Press. https://doi.org/https://doi.org/10.1016/B978-008045405-4.00252-4 Ateia, M., Alsbaiee, A., Karanfil, T., & Dichtel, W. (2019). Efficient PFAS Removal by Amine-Functionalized Sorbents: Critical Review of the Current Literature. Environmental Science & Technology Letters, 6(12), 688-695. https://doi.org/10.1021/acs.estlett.9b00659 Ateia, M., Maroli, A., Tharayil, N., & Karanfil, T. (2019). The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere, 220, 866-882. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.12.186 Atif, M., Haider, H. Z., Bongiovanni, R., Fayyaz, M., Razzaq, T., & Gul, S. (2022). Physisorption and chemisorption trends in surface modification of carbon black. Surfaces and Interfaces, 31, 102080. https://doi.org/https://doi.org/10.1016/j.surfin.2022.102080 Babatunde, K. A., Negash, B. M., Jufar, S. R., Ahmed, T. Y., & Mojid, M. R. (2022). Adsorption of gases on heterogeneous shale surfaces: A review. Journal of Petroleum Science and Engineering, 208, 109466. https://doi.org/https://doi.org/10.1016/j.petrol.2021.109466 Bao, J., Liu, W., Liu, L., Jin, Y., Ran, X., & Zhang, Z. (2010). Perfluorinated compounds in urban river sediments from Guangzhou and Shanghai of China. Chemosphere, 80(2), 123-130. https://doi.org/https://doi.org/10.1016/j.chemosphere.2010.04.008 Berbar, Y., Amara, M., & Kerdjoudj, H. (2012). Effect of Adsorption of Polyethyleneimine on the Behaviour of Anion Exchange Resin. Procedia Engineering, 33, 126-133. https://doi.org/https://doi.org/10.1016/j.proeng.2012.01.1185 Beškoski, V. P., Yamamoto, A., Nakano, T., Yamamoto, K., Matsumura, C., Motegi, M., Beškoski, L. S., & Inui, H. (2018). Defluorination of perfluoroalkyl acids is followed by production of monofluorinated fatty acids. Science of The Total Environment, 636, 355-359. Bolto, B., Dixon, D., Eldridge, R., & King, S. (2002). Removal of THM precursors by coagulation or ion exchange. Water Research, 36(20), 5066-5073. Boyer, T. H., Fang, Y., Ellis, A., Dietz, R., Choi, Y. J., Schaefer, C. E., Higgins, C. P., & Strathmann, T. J. (2021). Anion exchange resin removal of per- and polyfluoroalkyl substances (PFAS) from impacted water: A critical review. Water Research, 200, 117244. https://doi.org/https://doi.org/10.1016/j.watres.2021.117244 Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., De Voogt, P., Jensen, A. A., Kannan, K., Mabury, S. A., & van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated environmental assessment and management, 7(4), 513-541. Chen, X., Li, J., Han, L., Wu, W., & Chen, M. (2023). Human health risk-based soil generic assessment criteria of representative perfluoroalkyl acids (PFAAs) under the agricultural land use in typical Chinese regions. Environmental pollution, 335, 122368. Das, S., & Ronen, A. (2022). A review on removal and destruction of per-and polyfluoroalkyl substances (PFAS) by novel membranes. Membranes, 12(7), 662. De Dardel, F., & Arden, T. V. (2000). Ion exchangers. Ullmann's Encyclopedia of Industrial Chemistry. Deng, S., Yu, Q., Huang, J., & Yu, G. (2010). Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry. Water Research, 44(18), 5188-5195. https://doi.org/https://doi.org/10.1016/j.watres.2010.06.038 Deng, S., Zhang, Q., Nie, Y., Wei, H., Wang, B., Huang, J., Yu, G., & Xing, B. (2012). Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environmental pollution, 168, 138-144. Deng, S. B., Bei, Y., Lu, X. Y., Du, Z. W., Wang, B., Wang, Y. J., Huang, J., & Yu, G. (2015). Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes. Frontiers of Environmental Science & Engineering, 9(5), 784-792. https://doi.org/10.1007/s11783-015-0790-1 Dhore, R., & Murthy, G. S. (2021). Per/polyfluoroalkyl substances production, applications and environmental impacts. Bioresource Technology, 341, 125808. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125808 Dixit, F., Barbeau, B., & Mohseni, M. (2018). Simultaneous uptake of NOM and Microcystin-LR by anion exchange resins: effect of inorganic ions and resin regeneration. Chemosphere, 192, 113-121. Dixit, F., Barbeau, B., Mostafavi, S. G., & Mohseni, M. (2019). PFOA and PFOS removal by ion exchange for water reuse and drinking applications: role of organic matter characteristics. Environmental Science: Water Research & Technology, 5(10), 1782-1795. Dixit, F., Barbeau, B., Mostafavi, S. G., & Mohseni, M. (2020). Removal of legacy PFAS and other fluorotelomers: optimized regeneration strategies in DOM-rich waters. Water Research, 183, 116098. Dixit, F., Barbeau, B., Mostafavi, S. G., & Mohseni, M. (2021). PFAS and DOM removal using an organic scavenger and PFAS-specific resin: Trade-off between regeneration and faster kinetics. Science of The Total Environment, 754, 142107. Dixit, F., Dutta, R., Barbeau, B., Berube, P., & Mohseni, M. (2021). PFAS removal by ion exchange resins: A review. Chemosphere, 272, 129777. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.129777 Du, X., Shi, Y., Jegatheesan, V., & Haq, I. U. (2020). A review on the mechanism, impacts and control methods of membrane fouling in MBR system. Membranes, 10(2), 24. Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J., & Yu, G. (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. Journal of Hazardous Materials, 274, 443-454. Gagliano, E., Sgroi, M., Falciglia, P. P., Vagliasindi, F. G., & Roccaro, P. (2020). Removal of poly-and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Research, 171, 115381. Gao, K., Chen, Y., Xue, Q., Fu, J., Fu, K., Fu, J., Zhang, A., Cai, Z., & Jiang, G. (2020). Trends and perspectives in per-and polyfluorinated alkyl substances (PFASs) determination: Faster and broader. TrAC Trends in Analytical Chemistry, 133, 116114. https://doi.org/https://doi.org/10.1016/j.trac.2020.116114 Giesy, J. P., & Kannan, K. (2001). Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology, 35(7), 1339-1342. Glüge, J., Scheringer, M., Cousins, I. T., DeWitt, J. C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C. A., Trier, X., & Wang, Z. Y. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science-Processes & Impacts, 22(12), 2345-2373. https://doi.org/10.1039/d0em00291g Gomis, M. I., Vestergren, R., Borg, D., & Cousins, I. T. (2018). Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environment international, 113, 1-9. Hsu, S., & Singer, P. C. (2010). Removal of bromide and natural organic matter by anion exchange. Water Research, 44(7), 2133-2140. Huang, S., & Jaffé, P. R. (2019). Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6. Environmental Science & Technology, 53(19), 11410-11419. Ji, W., Xiao, L. L., Ling, Y. H., Ching, C., Matsumoto, M., Bisbey, R. P., Helbling, D. E., & Dichtel, W. R. (2018). Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent Organic Frameworks. Journal of the American Chemical Society, 140(40), 12677-12681. https://doi.org/10.1021/jacs.8b06958 Jian, J.-M., Guo, Y., Zeng, L., Liang-Ying, L., Lu, X., Wang, F., & Zeng, E. Y. (2017). Global distribution of perfluorochemicals (PFCs) in potential human exposure source–a review. Environment international, 108, 51-62. Jin, Y. H., Liu, W., Sato, I., Nakayama, S. F., Sasaki, K., Saito, N., & Tsuda, S. (2009). PFOS and PFOA in environmental and tap water in China. Chemosphere, 77(5), 605-611. https://doi.org/https://doi.org/10.1016/j.chemosphere.2009.08.058 Ju, X. D., Jin, Y. H., Sasaki, K., & Saito, N. (2008). Perfluorinated surfactants in surface, subsurface water and microlayer from Dalian Coastal waters in China. Environmental Science & Technology, 42(10), 3538-3542. https://doi.org/10.1021/es703006d Kotthoff, M., & Bücking, M. (2018). Four chemical trends will shape the next decade's directions in perfluoroalkyl and polyfluoroalkyl substances research. Frontiers in chemistry, 6, 103. Kwon, B. G., Lim, H.-J., Na, S.-H., Choi, B.-I., Shin, D.-S., & Chung, S.-Y. (2014). Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere, 109, 221-225. Levchuk, I., Màrquez, J. J. R., & Sillanpää, M. (2018). Removal of natural organic matter (NOM) from water by ion exchange–a review. Chemosphere, 192, 90-104. Li, Y.-F., Ho, C.-Y., Liu, Y.-J., Lee, Y.-C., Hu, C.-Y., & Lo, S.-L. (2024). Enhance electrocoagulation-flotation (ECF) removal efficiency perfluorohexanoic acid (PFHxA) by adding surfactants. Journal of Environmental Chemical Engineering, 12(1), 111773. https://doi.org/https://doi.org/10.1016/j.jece.2023.111773 Lin, Y.-C., Lai, W. W.-P., Tung, H.-h., & Lin, A. Y.-C. (2015). Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environmental Monitoring and Assessment, 187(5), 256. https://doi.org/10.1007/s10661-015-4497-3 Lindstrom, A. B., Strynar, M. J., & Libelo, E. L. (2011). Polyfluorinated Compounds: Past, Present, and Future. Environmental Science & Technology, 45(19), 7954-7961. https://doi.org/10.1021/es2011622 Liu, J., Cheney, M. A., Wu, F., & Li, M. (2011). Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces. Journal of Hazardous Materials, 186(1), 108-113. Liu, K., Zhang, S., Hu, X., Zhang, K., Roy, A., & Yu, G. (2015). Understanding the Adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal–Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments. Environmental Science & Technology, 49(14), 8657-8665. https://doi.org/10.1021/acs.est.5b00802 Lu, X., Deng, S., Wang, B., Huang, J., Wang, Y., & Yu, G. (2016). Adsorption behavior and mechanism of perfluorooctane sulfonate on nanosized inorganic oxides. Journal of colloid and interface science, 474, 199-205. Maimaiti, A., Deng, S. B., Meng, P. P., Wang, W., Wang, B., Huang, J., Wang, Y. J., & Yu, G. (2018). Competitive adsorption of perfluoroalkyl substances on anion exchange resins in simulated AFFF-impacted groundwater. Chemical Engineering Journal, 348, 494-502. https://doi.org/10.1016/j.cej.2018.05.006 Marin, N. M., & Stanculescu, I. (2021). Application of Amberlite IRA 402 Resin Adsorption and Laccase Treatment for Acid Blue 113 Removal from Aqueous Media. Polymers, 13(22), Article 3991. https://doi.org/10.3390/polym13223991 Maul, G. A., Kim, Y., Amini, A., Zhang, Q., & Boyer, T. H. (2014). Efficiency and life cycle environmental impacts of ion-exchange regeneration using sodium, potassium, chloride, and bicarbonate salts. Chemical Engineering Journal, 254, 198-209. McCleaf, P., Englund, S., Östlund, A., Lindegren, K., Wiberg, K., & Ahrens, L. (2017). Removal efficiency of multiple poly-and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Research, 120, 77-87. McKenzie, E. R., Siegrist, R. L., McCray, J. E., & Higgins, C. P. (2015). Effects of chemical oxidants on perfluoroalkyl acid transport in one-dimensional porous media columns. Environmental Science & Technology, 49(3), 1681-1689. Meegoda, J. N., Kewalramani, J. A., Li, B., & Marsh, R. W. (2020). A Review of the Applications, Environmental Release, and Remediation Technologies of Per- and Polyfluoroalkyl Substances. International Journal of Environmental Research and Public Health, 17(21), Article 8117. https://doi.org/10.3390/ijerph17218117 Moody, C. A., Martin, J. W., Kwan, W. C., Muir, D. C. G., & Mabury, S. C. (2002). Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek. Environmental Science & Technology, 36(4), 545-551. https://doi.org/10.1021/es011001+ Oldham, E. D., Xie, W., Farnoud, A. M., Fiegel, J., & Lehmler, H.-J. (2012). Disruption of phosphatidylcholine monolayers and bilayers by perfluorobutane sulfonate. The Journal of Physical Chemistry B, 116(33), 9999-10007. Ordonez, D., Valencia, A., Sadmani, A. A., & Chang, N.-B. (2022). Green sorption media for the removal of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) from water. Science of The Total Environment, 819, 152886. Padak, B., & Wilcox, J. (2009). Understanding mercury binding on activated carbon. Carbon, 47(12), 2855-2864. Post, G. B., Gleason, J. A., & Cooper, K. R. (2017). Key scientific issues in developing drinking water guidelines for perfluoroalkyl acids: Contaminants of emerging concern. PLoS biology, 15(12), e2002855. Punyapalakul, P., Suksomboon, K., Prarat, P., & Khaodhiar, S. (2013). Effects of Surface Functional Groups and Porous Structures on Adsorption and Recovery of Perfluorinated Compounds by Inorganic Porous Silicas. Separation Science and Technology, 48(5), 775-788. https://doi.org/10.1080/01496395.2012.710888 Rahman, M. F., Peldszus, S., & Anderson, W. B. (2014). Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Research, 50, 318-340. Rayne, S., & Forest, K. (2009). Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. Journal of Environmental Science and Health Part A, 44(12), 1145-1199. Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. https://doi.org/https://doi.org/10.1016/j.clet.2020.100032 Tang, X., Ripepi, N., Luxbacher, K., & Pitcher, E. (2017). Adsorption models for methane in shales: Review, comparison, and application. Energy & Fuels, 31(10), 10787-10801. Teymourian, T., Teymoorian, T., Kowsari, E., & Ramakrishna, S. (2021). A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. Research on Chemical Intermediates, 47(12), 4879-4914. https://doi.org/10.1007/s11164-021-04603-7 Tokranov, A. K., Nishizawa, N., Amadei, C. A., Zenobio, J. E., Pickard, H. M., Allen, J. G., Vecitis, C. D., & Sunderland, E. M. (2018). How do we measure poly-and perfluoroalkyl substances (PFASs) at the surface of consumer products? Environmental Science & Technology Letters, 6(1), 38-43. Unep, U. (2009). United Nations environment programme: Stockholm convention on persistent organic pollutants. In: Geneva. Wang, F., Liu, C., & Shih, K. (2012). Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite. Chemosphere, 89(8), 1009-1014. Wang, R., Ching, C., Dichtel, W. R., & Helbling, D. E. (2020). Evaluating the removal of per-and polyfluoroalkyl substances from contaminated groundwater with different adsorbents using a suspect screening approach. Environmental Science & Technology Letters, 7(12), 954-960. Wang, W., Maimaiti, A., Shi, H. L., Wu, R. R., Wang, R., Li, Z. L., Qi, D. L., Yu, G., & Deng, S. B. (2019). Adsorption behavior and mechanism of emerging perfluoro-2-propoxypropanoic acid (GenX) on activated carbons and resins. Chemical Engineering Journal, 364, 132-138. https://doi.org/10.1016/j.cej.2019.01.153 Wang, Z., Boucher, J. M., Scheringer, M., Cousins, I. T., & Hungerbuhler, K. (2017). Toward a comprehensive global emission inventory of C4–C10 perfluoroalkanesulfonic acids (PFSAs) and related precursors: focus on the life cycle of C8-based products and ongoing industrial transition. Environmental Science & Technology, 51(8), 4482-4493. Wang, Z., DeWitt, J. C., Higgins, C. P., & Cousins, I. T. (2017). A never-ending story of per-and polyfluoroalkyl substances (PFASs)? In: ACS Publications. Wang, Z., Li, Y., Guo, P., & Meng, W. (2016). Analyzing the adaption of different adsorption models for describing the shale gas adsorption law. Chemical Engineering & Technology, 39(10), 1921-1932. Wasel, O., Thompson, K. M., Gao, Y., Godfrey, A. E., Gao, J., Mahapatra, C. T., Lee, L. S., Sepúlveda, M. S., & Freeman, J. L. (2021). Comparison of zebrafish in vitro and in vivo developmental toxicity assessments of perfluoroalkyl acids (PFAAs). Journal of Toxicology and Environmental Health, Part A, 84(3), 125-136. Wilkinson, J., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2017). Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environmental pollution, 231, 954-970. Wilkinson, J. L., Hooda, P. S., Swinden, J., Barker, J., & Barton, S. (2017). Spatial distribution of organic contaminants in three rivers of Southern England bound to suspended particulate material and dissolved in water. Science of The Total Environment, 593, 487-497. Yi, L., Chai, L., Xie, Y., Peng, Q., & Peng, Q. (2016). Isolation, identification, and degradation performance of a PFOA-degrading strain. Genet. Mol. Res, 15(2), 235-246. Yu, Q., Zhang, R., Deng, S., Huang, J., & Yu, G. (2009). Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Research, 43(4), 1150-1158. Zeeshan, M., Yang, Y., Zhou, Y., Huang, W., Wang, Z., Zeng, X.-Y., Liu, R.-Q., Yang, B.-Y., Hu, L.-W., & Zeng, X.-W. (2020). Incidence of ocular conditions associated with perfluoroalkyl substances exposure: Isomers of C8 Health Project in China. Environment international, 137, 105555. Zhang, T., Wu, Q., Sun, H. W., Zhang, X. Z., Yun, S. H., & Kannan, K. (2010). Perfluorinated compounds in whole blood samples from infants, children, and adults in China. Environmental Science & Technology, 44(11), 4341-4347. Zhi, Y., Zhao, X., Qian, S., Faria, A. F., Lu, X., Wang, X., Li, W., Han, L., Tao, Z., He, Q., Ma, J., & Liu, C. (2022). Removing emerging perfluoroalkyl ether acids and fluorotelomer sulfonates from water by nanofiltration membranes: Insights into performance and underlying mechanisms. Separation and Purification Technology, 298, 121648. https://doi.org/https://doi.org/10.1016/j.seppur.2022.121648 Zhou, Z., Liang, Y., Shi, Y., Xu, L., & Cai, Y. (2013). Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China. Environmental Science & Technology, 47(16), 9249-9257. 呂慶慧. (2009). 美國環保署長鏈全氟化物法規未來研擬趨勢. 李岳峰. (2022). 以電混凝浮除法去除全氟辛酸之研究 國立臺灣大學. https://doi.org/10.6342%2fNTU202201348 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93365 | - |
| dc.description.abstract | 全氟化合物 (Per and Polyfluoroalkyl Substances, PFAs) 具有疏水、疏油和熱穩定性,此特殊性來自碳鏈上穩定性良好的 C-F 鍵,因此被廣泛應用於各種工業製程及民生產品中。長碳鏈 PFAs(C8)因其持久性和生物累積毒性,各國開始制定政策,逐步以短碳鏈 PFAs(C4)取代,如全氟丁烷磺酸(Perfluorobutanesulfonic Acid, PFBS),有關 C4 對環境的影響和安全性的資料仍不完整,缺乏毒性、生物累積潛力和生物降解性等方面的研究。隨著C4 的使用量增加,其排放量也會隨之上升,從而增加環境和人體的暴露風險。因此,實有必要有效去除C4的方法。
本研究利用強鹼型陰離子交換樹脂(Anion Exchange Resin, IER) 去除水中之 PFBS,分析離子交換樹脂之界達電位、表面結構和組成物質,並研究離子交換樹脂添加量、攪拌速率、pH 值、初始 PFBS 濃度不同參數對去除效果之影響。根據實驗所得到之最佳結果,利用聚乙烯亞胺溶液 (Polyethylenimine,PEI) 研究胺改IER (IER-PEI) 對PFBS之去除影響。研究結果顯示,實驗水溶液pH 值為3.0、攪拌速率400 rpm、初始PFBS濃度100 ppm以及添加4g/L IER-PEI,反應10分鐘後去除率達97.56%,交換量為27.784 mg/g。IER與PFBS進行離子交換符合擬二階反應動力模式,等溫模型模擬結果符合Langmuir等溫模型。 | zh_TW |
| dc.description.abstract | Per and polyfluoroalkyl substances (PFAs) are renowned for their hydrophobic, oleophobic, and thermal stability properties. Their uniqueness stems from the highly stable C-F bonds in their carbon chains, making them widely utilized in various industrial processes and consumer products. Long-chain PFAs (C8), due to their persistence and bioaccumulative toxicity, have led countries to establish policies to gradually replace them with short-chain PFAs (C4), such as perfluorobutanesulfonic acid (PFBS). However, data on the environmental impact and safety of C4 PFAs remain incomplete, lacking research on toxicity, bioaccumulation potential, and biodegradability. With the use of C4 PFAs increases, their emissions will also rise, thereby escalating environmental and human exposure risks. Consequently, developing effective methods for the removal of C4 PFAs has become a crucial area of research and development.
This study utilizes a strong base anion exchange resin (Anion Exchange Resin, IER) to remove PFBS from water. The zeta potential, surface structure, and composition of the ion exchange resin were analyzed. The effects of various parameters, such as the amount of ion exchange resin added, stirring rate, pH value, and initial PFBS concentration, on the removal efficiency were investigated. Based on the optimal results obtained from the experiments, the effect of amine-modified IER (IER-PEI) on PFBS removal was studied using a polyethyleneimine solution (PEI). The research results show that, with a solution pH of 3.0, a stirring rate of 400 rpm, an initial PFBS concentration of 100 ppm, and the addition of 4 g/L IER-PEI, the removal rate reached 97.56% after 10 minutes, with an exchange capacity of 27.784 mg/g. The ion exchange between IER and PFBS follows the pseudo-second-order kinetic model, and the isothermal model simulation results conform to the Langmuir isothermal model. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:09:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-30T16:09:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
摘要 iii Abstract iv 目次 v 圖次 vii 表次 ix 第一章 緒論 1 1.1前言 1 1.2研究目的 2 1.3研究內容 2 第二章 文獻回顧 4 2.1 全氟化合物特性以及相關議題 4 2.2 全氟化合物處理技術 11 2.3離子交換 15 2.3.1離子交換樹脂 15 2.3.2 動力學模型 19 2.4 胺改離子交換樹脂之物質 21 2.4.1 聚乙烯亞胺 21 2.4.2 胺官能化 23 第三章 研究方法 25 3.1 研究架構 25 3.2 實驗方法設計 27 3.3 實驗藥品 30 3.4 實驗儀器與設備 30 3.5 分析儀器 30 第四章 結果與討論 37 4.1 背景實驗 37 4.1.1 器材吸附實驗 37 4.1.2 緩衝溶液空白實驗 38 4.2 離子交換樹脂物化性質分析 39 4.2.1 界達電位分析 39 4.2.2 傅立葉紅外光譜儀 40 4.2.3掃描式電子顯微鏡分析 41 4.3 實驗操作之參數 47 4.3.1 離子交換樹脂添加量之影響 47 4.3.2 攪拌速率之影響 49 4.3.3 pH值之影響 50 4.3.4 PFBS初始濃度之影響 51 4.4胺改離子交換樹脂實驗 54 4.4.1 PEI濃度實驗 54 4.4.2 浸泡時間實驗 55 4.4.3 PEI溶液pH實驗 56 4.5反應動力學模型 59 4.6等溫反應模型 59 第五章 結論與建議 63 5.1結論 63 5.2 建議 63 參考文獻 65 附錄 實驗數據 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 聚乙烯亞胺 | zh_TW |
| dc.subject | 全氟丁烷磺酸 | zh_TW |
| dc.subject | 離子交換樹脂 | zh_TW |
| dc.subject | Polyethylenimine | en |
| dc.subject | Perfluorobutanesulfonic Acid | en |
| dc.subject | Ion Exchange Resin | en |
| dc.title | 陰離子交換樹脂胺官能化對全氟丁烷磺酸去除研究 | zh_TW |
| dc.title | Removal of Perfluorobutanesulfonic Acid by Amine-modified Anion Exchange Resin | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡景堯;林進榮 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Yao Hu;Chin-Jung Lin | en |
| dc.subject.keyword | 全氟丁烷磺酸,離子交換樹脂,聚乙烯亞胺, | zh_TW |
| dc.subject.keyword | Perfluorobutanesulfonic Acid,Ion Exchange Resin,Polyethylenimine, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202402110 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-24 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
