Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93348
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐宏民zh_TW
dc.contributor.advisorWinston H. HSUen
dc.contributor.author林忠毅zh_TW
dc.contributor.authorChung-Yi Linen
dc.date.accessioned2024-07-29T16:23:02Z-
dc.date.available2024-07-30-
dc.date.copyright2024-07-29-
dc.date.issued2024-
dc.date.submitted2024-07-26-
dc.identifier.citationReference
[1] N. Aharon, R. Orfaig, and B.-Z. Bobrovsky. Bot-sort: Robust associations multi-pedestrian tracking. arXiv preprint arXiv:2206.14651, 2022.
[2] C. Ananth, K. Nagarajan, et al. A smart approach for secure control of railway transportation systems. International Journal of Pure and Applied Mathematics, 2017.
[3] S. Babu and B. Manoj. Toward a type-based analysis of road networks. ACM Transactions on Spatial Algorithms and Systems (TSAS), 2020.
[4] H. Barbosa, M. Barthelemy, G. Ghoshal, C. R. James, M. Lenormand, T. Louail, R. Menezes, J. J. Ramasco, F. Simini, and M. Tomasini. Human mobility: Models and applications. Physics Reports, 2018.
[5] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi, F. An-tonelli, A. Vespignani, A. Pentland, and B. Lepri. A multi-source dataset of urban life in the city of milan and the province of trentino. Scientific data, 2015.
[6] H. Y. Bing Yu and Z. Zhu. Spatio-temporal graph convolutional networks a deep learning framework for traffic forecasting. In Proceedings of IJCAI, 2018.
[7] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? In Proceedings of ICLR, 2022.
[8] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy. Machine learning on graphs: A model and comprehensive taxonomy. Journal of Machine Learning Research, 2022.
[9] S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath. An attentive survey of attention models. ACM Transactions on Intelligent Systems and Technology (TIST), 2021.
[10] A. Cheng. Pac-gan: Packet generation of network traffic using generative adversarial networks. In Proceedings of IEMCON. IEEE, 2019.
[11] U. Cisco. Cisco annual internet report (2018–2023) white paper. 2020. Acessadoem, 2021.
[12] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation coefficient. Noise reduction in speech processing, 2009.
[13] A. Deng and B. Hooi. Graph neural network-based anomaly detection in multivariate time series. In Proceedings of AAAI, 2021.
[14] Z. Diao, D. Zhang, X. Wang, K. Xie, S. He, X. Lu, and Y. Li. A hybrid model for short-term traffic volume prediction in massive transportation systems. IEEE Transactions on Intelligent Transportation Systems, 2018.
[15] G. Díaz, H. Macià, V. Valero, J. Boubeta-Puig, and F. Cuartero. An intelligent transportation system to control air pollution and road traffic in cities integrating cep and colored petri nets. Neural Computing and Applications, 2020.
[16] Z. Ebrahimpour, W. Wan, O. Cervantes, T. Luo, and H. Ullah. Comparison of main approaches for extracting behavior features from crowd flow analysis. ISPRS International Journal of Geo-Information, 2019.
[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum chemistry. In Proceedings of ICML. PMLR, 2017.
[18] J. Gong, Q. Yu, T. Li, H. Liu, J. Zhang, H. Fan, D. Jin, and Y. Li. Scalable digital twin system for mobile networks with generative ai. In Proceedings of MobiSys, 2023.
[19] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of AAAI, 2019.
[20] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. 2017.
[21] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584, 2017.
[22] L. Han, B. Du, L. Sun, Y. Fu, Y. Lv, and H. Xiong. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting. In Proceedings of KDD, 2021.
[23] L. He, X. Liao, W. Liu, X. Liu, P. Cheng, and T. Mei. Fastreid: A pytorch toolbox for general instance re-identification. In Proceedings of ACM MM, 2023.
[24] Q. He, G. Dán, and G. P. Koudouridis. Semi-persistent scheduling for 5g down-link based on short-term traffic prediction. In Proceedings of GLOBECOM. IEEE, 2020.
[25] S. He and K. G. Shin. Towards fine-grained flow forecasting: A graph attention approach for bike sharing systems. In Proceedings of WWW, 2020.
[26] A. Hess, K. A. Hummel, W. N. Gansterer, and G. Haring. Data-driven human mobility modeling: a survey and engineering guidance for mobile networking. ACM Computing Surveys (CSUR), 2015.
[27] B. Huang and K. M. Carley. Syntax-aware aspect level sentiment classification with graph attention networks. arXiv preprint arXiv:1909.02606, 2019.
[28] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang. Stgat: Modeling spatial-temporal interactions for human trajectory prediction. In Proceedings of ICCV, 2019.
[29] S. Hui, H. Wang, T. Li, X. Yang, X. Wang, J. Feng, L. Zhu, C. Deng, P. Hui, D. Jin, et al. Large-scale urban cellular traffic generation via knowledge-enhanced gans with multi-periodic patterns. In Proceedings of KDD, 2023.
[30] C. V. N. Index. Global mobile data traffic forecast update, 2017–2022. Cisco white paper, 2019.
[31] S. Jiang, G. A. Fiore, Y. Yang, J. Ferreira Jr, E. Frazzoli, and M. C. González. A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In Proceedings of KDD, 2013.
[32] W. Jiang. Cellular traffic prediction with machine learning: A survey. Expert Systems with Applications, 2022.
[33] W. Jiang and J. Luo. Graph neural network for traffic forecasting: A survey. Expert Systems with Applications, 2022.
[34] R. Jurkus, J. Venskus, and P. Treigys. Application of coordinate systems for vessel trajectory prediction improvement using a recurrent neural networks. Engineering Applications of Artificial Intelligence, 2023.
[35] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
[36] D. Lee, S. Zhou, X. Zhong, Z. Niu, X. Zhou, and H. Zhang. Spatial modeling of the traffic density in cellular networks. IEEE Wireless Communications, 2014.
[37] C. Li, A. Yongacoglu, and C. D’Amours. Mixed spatial traffic modeling of heterogeneous cellular networks. In Proceedings of ICUWB. IEEE, 2015.
[38] C. Li, W. Yue, G. Mao, and Z. Xu. Congestion propagation based bottleneck identification in urban road networks. IEEE Transactions on Vehicular Technology, 2020.
[39] F. Li, J. Feng, H. Yan, G. Jin, F. Yang, F. Sun, D. Jin, and Y. Li. Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution. ACM Transactions on Knowledge Discovery from Data, 2023.
[40] T. Li, Y. Li, T. Xia, and P. Hui. Finding spatiotemporal patterns of mobile application usage. IEEE Transactions on Network Science and Engineering, 2021.
[41] T. Li, T. Xia, H. Wang, Z. Tu, S. Tarkoma, Z. Han, and P. Hui. Smartphone app usage analysis: datasets, methods, and applications. IEEE Communications Surveys & Tutorials, 2022.
[42] W. Li, J. Cao, J. Guan, S. Zhou, G. Liang, W. K. So, and M. Szczecinski. A general framework for unmet demand prediction in on-demand transport services. IEEE Transactions on Intelligent Transportation Systems, 2018.
[43] Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In Proceedings of ICLR, 2018.
[44] C. Lin, S.-L. Tung, H.-T. Su, and W. H. Hsu. Ctcam: Enhancing transportation evaluation through fusion of cellular traffic and camera-based vehicle flows. In Proceedings of CIKM, 2023.
[45] C. Lin, S.-L. Tung, H.-T. Su, and W. H. Hsu. Pay attention to multi-channel for improving graph neural networks. In Proceedings of ICLR, 2023.
[46] C. Lin, S.-L. Tung, H.-T. Su, and W. H. Hsu. Teltrans: Applying multi-type telecom data to transportation evaluation and prediction via multifaceted graph modeling. In Proceedings of AAAI, 2024.
[47] C.-Y. Lin, H.-T. Su, S.-L. Tung, and W. H. Hsu. Multivariate and propagation graph attention network for spatial-temporal prediction with outdoor cellular traffic. In Proceedings of CIKM, 2021.
[48] J. Lin, Y. Chen, H. Zheng, M. Ding, P. Cheng, and L. Hanzo. A data-driven base station sleeping strategy based on traffic prediction. IEEE Transactions on Network Science and Engineering, 2021.
[49] M. Luca, G. Barlacchi, B. Lepri, and L. Pappalardo. A survey on deep learning for human mobility. ACM Computing Surveys (CSUR), 2021.
[50] Z. Lv, Y. Li, H. Feng, and H. Lv. Deep learning for security in digital twins of cooperative intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 2021.
[51] G. Maity, S. K. Roy, and J. L. Verdegay. Analyzing multimodal transportation problem and its application to artificial intelligence. Neural Computing and Applications, 2020.
[52] H. Mei, J. Li, Z. Liang, G. Zheng, B. Shi, and H. Wei. Uncertainty-aware traffic prediction under missing data. In Proceedings of ICDM. IEEE, 2023.
[53] J. Mena-Oreja and J. Gozalvez. On the impact of floating car data and data fusion on the prediction of the traffic density, flow and speed using an error recurrent convolutional neural network. IEEE Access, 2021.
[54] S. Meta and M. G. Cinsdikici. Vehicle-classification algorithm based on component analysis for single-loop inductive detector. IEEE Transactions on Vehicular Technology, 2010.
[55] A. M. Nagy and V. Simon. Improving traffic prediction using congestion propagation patterns in smart cities. Advanced Engineering Informatics, 2021.
[56] B. N. Oreshkin, A. Amini, L. Coyle, and M. Coates. FC-GAGA: Fully connected gated graph architecture for spatio-temporal traffic forecasting. In Proceedings of AAAI, 2021.
[57] C.-H. Peng, Y.-L. Yang, F. Bao, D. Fink, D.-M. Yan, P. Wonka, and N. J. Mitra. Computational network design from functional specifications. ACM Transactions on Graphics (TOG), 2016.
[58] M. Saberi, H. Hamedmoghadam, M. Ashfaq, S. A. Hosseini, Z. Gu, S. Shafiei, D. J. Nair, V. Dixit, L. Gardner, S. T. Waller, et al. A simple contagion process describes spreading of traffic jams in urban networks. Nature communications, 2020.
[59] P. Sedgwick. Pearson's correlation coefficient. Bmj, 2012.
[60] R. Sen, A. Maurya, B. Raman, R. Mehta, R. Kalyanaraman, N. Vankadhara, S. Roy, and P. Sharma. Kyun queue: a sensor network system to monitor road traffic queues. In Proceedings of SenSys, 2012.
[61] W. Shao, Z. Jin, S. Wang, Y. Kang, X. Xiao, H. Menouar, Z. Zhang, J. Zhang, and F. Salim. Long-term spatio-temporal forecasting via dynamic multiple-graph attention. In Proceedings of IJCAI, 2022.
[62] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE signal processing magazine, 2013.
[63] B. Sliwa, T. Liebig, T. Vranken, M. Schreckenberg, and C. Wietfeld. System-of-systems modeling, analysis and optimization of hybrid vehicular traffic. In Proceedings of SysCon. IEEE, 2019.
[64] G. Solmaz and D. Turgut. A survey of human mobility models. IEEE Access, 2019.
[65] C. Song, Y. Lin, S. Guo, and H. Wan. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In Proceedings of AAAI, 2020.
[66] X. Ta, Z. Liu, X. Hu, L. Yu, L. Sun, and B. Du. Adaptive spatio-temporal graph neural network for traffic forecasting. Knowledge-Based Systems, 2022.
[67] L. Tang, Y. Zhao, J. Cabrera, J. Ma, and K. L. Tsui. Forecasting short-term passenger flow: An empirical study on shenzhen metro. IEEE Transactions on Intelligent Transportation Systems, 2018.
[68] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient transformers: A survey. ACM Computing Surveys (CSUR), 2020.
[69] C. Tian and W. K. Chan. Spatial-temporal attention wavenet: A deep learning framework for traffic prediction considering spatial-temporal dependencies. IET Intelligent Transport Systems, 2021.
[70] H. D. Trinh, N. Bui, J. Widmer, L. Giupponi, and P. Dini. Analysis and modeling of mobile traffic using real traces. In Proceedings of PIMRC. IEEE, 2017.
[71] I. Urazghildiiev, R. Ragnarsson, K. Wallin, A. Rydberg, P. Ridderstrom, and E. Ojefors. A vehicle classification system based on microwave radar measurement of height profiles. In Proceedings of RADAR. IET, 2002.
[72] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention networks. In Proceedings of ICLR, 2018.
[73] D. Vij and N. Aggarwal. Smartphone based traffic state detection using acoustic analysis and crowdsourcing. Applied Acoustics, 2018.
[74] C. Wang, Y. Zhu, T. Zang, H. Liu, and J. Yu. Modeling inter-station relationships with attentive temporal graph convolutional network for air quality prediction. In Proceedings of WSDM, 2021.
[75] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of CVPR, 2023.
[76] G. Wang, R. Ying, J. Huang, and J. Leskovec. Improving graph attention networks with large margin-based constraints. arXiv preprint arXiv:1910.11945, 2019.
[77] X. Wang, Z. Zhou, F. Xiao, K. Xing, Z. Yang, Y. Liu, and C. Peng. Spatio-temporal analysis and prediction of cellular traffic in metropolis. IEEE Transactions on Mobile Computing, 2018.
[78] Z. Wang, J. Hu, G. Min, Z. Zhao, Z. Chang, and Z. Wang. Spatial-temporal cellular traffic prediction for 5 g and beyond: A graph neural networks-based approach. IEEE Transactions on Industrial Informatics, 2022.
[79] S. Wu, X. Yan, X. Fan, S. Pan, S. Zhu, C. Zheng, M. Cheng, and C. Wang. Multi-graph fusion networks for urban region embedding. In Proceedings of IJCAI, 2022.
[80] Y. Wu, D. Zhuang, A. Labbe, and L. Sun. Inductive graph neural networks for spatiotemporal kriging. In Proceedings of AAAI, 2021.
[81] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang. Connecting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings of KDD, 2020.
[82] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang. Graph wavenet for deep spatial-temporal graph modeling. In Proceedings of IJCAI, 2019.
[83] P. Xie, T. Li, J. Liu, S. Du, X. Yang, and J. Zhang. Urban flow prediction from spatiotemporal data using machine learning: A survey. Information Fusion, 2020.
[84] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin. Understanding mobile traffic patterns of large scale cellular towers in urban environment. IEEE/ACM transactions on networking, 2016.
[85] J. Xu, R. Rahmatizadeh, L. Bölöni, and D. Turgut. Real-time prediction of taxi demand using recurrent neural networks. IEEE Transactions on Intelligent Transportation Systems, 2017.
[86] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? Proceedings of ICLR, 2018.
[87] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings of ICML. PMLR, 2018.
[88] Y. Yao, B. Gu, Z. Su, and M. Guizani. Mvstgn: A multi-view spatial-temporal graph network for cellular traffic prediction. IEEE Transactions on Mobile Computing, 2021.
[89] J. Ye, Z. Liu, B. Du, L. Sun, W. Li, Y. Fu, and H. Xiong. Learning the evolutionary and multi-scale graph structure for multivariate time series forecasting. In Proceedings of KDD, 2022.
[90] S. Yidan, H. Peilan, J. Guiyuan, and S.-K. Lam. Learning congestion propagation behaviors for traffic prediction. In Proceedings of ITSC. IEEE, 2021.
[91] X. Yin, G. Wu, J. Wei, Y. Shen, H. Qi, and B. Yin. Deep learning on traffic prediction: Methods, analysis, and future directions. IEEE Transactions on Intelligent Transportation Systems, 2021.
[92] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In Proceedings of IJCAI, 2018.
[93] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.
[94] C. Zhang, H. Zhang, D. Yuan, and M. Zhang. Citywide cellular traffic prediction based on densely connected convolutional neural networks. IEEE Communications Letters, 2018.
[95] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D. Y. Yeung. Gaan: Gated attention networks for learning on large and spatiotemporal graphs. In Proceedings of UAI, 2018.
[96] K. Zhang, Y. Zhu, J. Wang, and J. Zhang. Adaptive structural fingerprints for graph attention networks. In Proceedings of ICLR, 2019.
[97] X. Zhang, A. Haghani, and S. Yang. Is dynamic traffic sensor network profitable for network-level real-time information prediction? Transportation Research Part C: Emerging Technologies, 2019.
[98] X. Zhang, C. Huang, Y. Xu, and L. Xia. Spatial-temporal convolutional graph attention networks for citywide traffic flow forecasting. In Proceedings of CIKM, 2020.
[99] X. Zhang, C. Huang, Y. Xu, L. Xia, P. Dai, L. Bo, J. Zhang, and Y. Zheng. Traffic flow forecasting with spatial-temporal graph diffusion network. In Proceedings of AAAI, 2021.
[100] Y. Zhang and A. Årvidsson. Understanding the characteristics of cellular data traffic. In Proceedings of SIGCOMM, 2012.
[101] Y. Zhang, Z. Wei, H. Li, L. Cai, and J. Pan. Optimal charging scheduling for catenary-free trams in public transportation systems. IEEE Transactions on Smart Grid, 2017.
[102] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong, B. Xu, J. Bai, J. Tong, and Q. Zhang. Multivariate time-series anomaly detection via graph attention network. In Proceedings of ICDM, 2020.
[103] N. Zhao, A. Wu, Y. Pei, Y.-C. Liang, and D. Niyato. Spatial-temporal aggregation graph convolution network for efficient mobile cellular traffic prediction. IEEE Communications Letters, 2021.
[104] C. Zheng, X. Fan, C. Wang, and J. Qi. Gman: A graph multi-attention network for traffic prediction. In Proceedings of AAAI, 2020.
[105] H. Zheng, W. Chang, and J. Wu. Traffic flow monitoring systems in smart cities: Coverage and distinguishability among vehicles. Journal of Parallel and Distributed Computing, 2019.
[106] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 2014.
[107] Y. Zheng, Z. Zhang, S. Yan, and M. Zhang. Deep autoaugment. In Proceedings of ICLR, 2021.
[108] F. Zhu, Y. Lv, Y. Chen, X. Wang, G. Xiong, and F.-Y. Wang. Parallel transportation systems: Toward iot-enabled smart urban traffic control and management. IEEE Transactions on Intelligent Transportation Systems, 2019.
[109] Z. Zhu, X. Xu, X. Zheng, Y. Sun, S. Zhou, J. Gong, and Z. Niu. A simulation study of hyper-cellular architecture with dynamic temporal and spatial traffic. In Proceedings of APCC. IEEE, 2015.
[110] D. Zidic, T. Mastelic, I. N. Kosovic, M. Cagalj, and J. Lorincz. Analyses of ping-pong handovers in real 4g telecommunication networks. Computer Networks, 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93348-
dc.description.abstract交通預測對於現代城市規劃和智慧交通系統(ITS)至關重要,因為它在交通管理、資源分配和公共安全方面具有顯著的優勢。然而,傳統方法依賴部署實體的感測器和攝影機,成本高且覆蓋範圍不足,突顯了需要可擴展且高效的替代方案。為了解決這些挑戰,我們探索了電信數據作為交通預測的彈性且可擴展的替代方案潛力。
我們提出使用從各個地區收集的“基於電信的流量”來評估交通狀況並同時保護用戶隱私。然後,我們提出一個時空預測模型來基於電信流量來預測這些區域未來的變化,作為初步的交通指標。為了有效地提高預測準確性,我們提出了一個多模態數據融合框架,利用廣泛電信數據與稀疏基於影像數據的結合來改善預測效果。
進一步,為了解決電信流量與實際交通流量之間的差距,我們改進了融合框架並提出聯合損失函數,使預測結果對齊實際交通流量。此外,我們開發了新穎框架,透過跨模態方式將無方向性的電信數據轉為有方向性的移動流量,解決缺乏方向性的問題。這些方法確保了更準確的實際交通狀況、精確的交通動態,並為城市管理提供了寶貴的見解。
總體而言,本論文通過將電信數據與交通領域知識相結合,推進了交通預測的發展。我們的創新方法提供了多樣且可擴展的解決方案,超越了傳統基於傳感器的系統,並為城市規劃和智慧交通系統做出了重大貢獻。
zh_TW
dc.description.abstractTraffic prediction is crucial for modern urban planning and intelligent transportation systems (ITS) due to its significant benefits for traffic management, resource allocation, and public safety. Traditional methods, reliant on fixed-location sensors and cameras, are costly and provide insufficient coverage, highlighting the need for scalable and efficient alternatives. To address these challenges, we explore the potential of telecom data as a flexible and scalable source for traffic prediction.
We propose the use of "telecom-based flow" collected from various areas to evaluate traffic conditions while protecting data privacy. We then present a spatio-temporal predictive model to predict future traffic conditions as an initial traffic indicator. To further improve prediction accuracy, we propose a multi-modal data fusion framework that combines extensive telecom data with sparse vision-based data.
To address the gap between telecom-based and actual traffic flow, we develop and enrich the fusion framework with a joint loss function to more closely align predictions with actual traffic flow. Additionally, we develop a cross-modal framework to convert undirected telecom data into directed mobility flow to address the lack of directionality. These approaches ensure more accurate real-world traffic conditions, precise traffic dynamics, and provide valuable insights for urban management.
Overall, this dissertation advances traffic prediction by integrating telecom data with traffic domain knowledge. Our innovative approaches offer diverse and scalable solutions, extending beyond traditional sensor-based systems, and provide significant contributions to urban planning and ITS.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:23:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-29T16:23:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xix
Chapter 1 Introduction 1
Chapter 2 Spatio-Temporal Prediction of Telecom-Based Flows 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Multi-type GCT flows Dataset . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Data Collection and Preprocessing . . . . . . . . . . . . . . . . . . 8
2.2.3 Data Analysis of GCT flow . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Interactions among GCT Flow’s Types. . . . . . . . . . . . . . . . 11
2.2.5 Path Forward for Real-world Deployment . . . . . . . . . . . . . . 12
2.3 MultiFaceted Graph Modeling (MFGM) . . . . . . . . . . . . . . . . 13
2.3.1 V-GCT Flow Prediction Task Definition . . . . . . . . . . . . . . . 13
2.3.2 Overview of the Proposed Model . . . . . . . . . . . . . . . . . . . 14
2.3.3 Channel-specific Graph Attention Layer (CGATL) . . . . . . . . . 15
2.3.4 Multivariate Facet Modeling . . . . . . . . . . . . . . . . . . . . . 17
2.3.5 Temporal Facet Modeling . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.6 Spatial Facet Modeling . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.7 Overall Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 V-GCT Prediction Evaluation . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Ablation Study of MFGM . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Sensitivity Analysis of Multi-Type GCT Flows . . . . . . . . . . . 23
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 3 Efficient Spatio-Temporal Graph Neural Network 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Multi-Channel Graph Attention . . . . . . . . . . . . . . . . . . . . 27
3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Chapter 4 Multi-Modal Data Fusion for Prediction Accuracy 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 CTCam Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Data Collection and Processing . . . . . . . . . . . . . . . . . . . . 38
4.3 Two-Stage Fusion for Prediction . . . . . . . . . . . . . . . . . . . . 40
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Experimental Settings and Baselines . . . . . . . . . . . . . . . . . 43
4.4.2 Prediction Improvement . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Chapter 5 Multi-Modal Alignment of Telecom Data with Actual Traffic 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Tel2Veh Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Data Collection and Processing . . . . . . . . . . . . . . . . . . . . 50
5.2.3 Enhancement for Vehicle Flow Counting . . . . . . . . . . . . . . . 53
5.2.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Spatio-Temporal Fusion Framework . . . . . . . . . . . . . . . . . . 55
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4.1 Experimental Settings and Baselines . . . . . . . . . . . . . . . . . 59
5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Applications for Future Expansion . . . . . . . . . . . . . . . . . . . 62
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Chapter 6 Cross-Modal Prediction for Traffic Directionality 63
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 TeltoMob dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.2 Data Collection and Processing . . . . . . . . . . . . . . . . . . . . 66
6.2.3 Data Privacy Protection . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.2 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.3 Stage 1 of Framework . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.4 Stage 2 of Framework . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.4.1 Transformation Step . . . . . . . . . . . . . . . . . . . 74
6.3.4.2 Enhancement Step . . . . . . . . . . . . . . . . . . . . 75
6.3.4.3 Prediction Step . . . . . . . . . . . . . . . . . . . . . . 77
6.3.4.4 Framework Training . . . . . . . . . . . . . . . . . . . 78
6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2 Prediction Performance . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.3 Ablation Study of Our Framework . . . . . . . . . . . . . . . . . . 81
6.4.4 Applications and Impact on Transportation . . . . . . . . . . . . . . 83
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Chapter 7 Conclusion 87
References 89
Appendix — Publications 103
Appendix — Open Source Datasets 105
-
dc.language.isoen-
dc.title串連電信與交通:推進圖神經網路於時空推理與多模態融合及預測zh_TW
dc.titleBridging Telecom and Transportation:Advancing Graph Neural Networks for Spatio-Temporal Reasoning, Multimodal Fusion and Predictionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee鄭卜壬;林守德;林忠緯;王鈺強;逄愛君;葉梅珍;王蒞君zh_TW
dc.contributor.oralexamcommitteePu-Jen Cheng;Shou-De Lin;Chung-Wei Lin;Yu-Chiang Wang;Ai-Chun Pang;Mei-Chen Yeh;Li-Chun Wangen
dc.subject.keyword電信數據應用,圖神經網路,時空推理,多模態融合與對齊,跨模態預測,zh_TW
dc.subject.keywordTelecom Data Applications,Graph Neural Networks,Spatio-Temporal Reasoning,Multimodal Fusion and Alignment,Cross-Modal Prediction,en
dc.relation.page105-
dc.identifier.doi10.6342/NTU202402338-
dc.rights.note未授權-
dc.date.accepted2024-07-27-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
13.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved