請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93347
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 錢義隆 | zh_TW |
dc.contributor.advisor | I-Lung Chien | en |
dc.contributor.author | 林孟暐 | zh_TW |
dc.contributor.author | Meng-Wei Lin | en |
dc.date.accessioned | 2024-07-29T16:22:45Z | - |
dc.date.available | 2024-07-30 | - |
dc.date.copyright | 2024-07-29 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2024-07-15 | - |
dc.identifier.citation | 1. Ali, U., K.J.B.A. Karim, and N.A. Buang, A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polymer Reviews, 2015. 55(4): p. 678-705.
2. Zidan, H. and M. Abu-Elnader, Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Physica B: Condensed Matter, 2005. 355(1-4): p. 308-317. 3. Cariou, J.-M., et al., Refractive-index variations with temperature of PMMA and polycarbonate. Applied optics, 1986. 25(3): p. 334-336. 4. Wang, J., et al., Molecular chemical structure on poly (methyl methacrylate)(PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy. The Journal of Physical Chemistry B, 2001. 105(48): p. 12118-12125. 5. Van der Lee, A., et al., Density profiles in thin PMMA supported films investigated by X-ray reflectometry. Langmuir, 2001. 17(24): p. 7664-7669. 6. Shobhana, E., X-Ray diffraction and UV-visible studies of PMMA thin films. Int. J. Mod. Eng. Res, 2012. 2(3): p. 1092-1095. 7. Luche, J., et al., Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter. Fire safety journal, 2011. 46(7): p. 451-461. 8. Balke, S. and A. Hamielec, Bulk polymerization of methyl methacrylate. Journal of applied Polymer science, 1973. 17(3): p. 905-949. 9. Kalfas, G., H. Yuan, and W.H. Ray, Modeling and experimental studies of aqueous suspension polymerization processes. 2. Experiments in batch reactors. Industrial & engineering chemistry research, 1993. 32(9): p. 1831-1838. 10. Bhanvase, B., et al., Analysis of semibatch emulsion polymerization: role of ultrasound and initiator. Ultrasonics sonochemistry, 2012. 19(1): p. 97-103. 11. Pawar, E., A review article on acrylic PMMA. IOSR J. Mech. Civ. Eng, 2016. 13(2): p. 1-4. 12. Thielen, T., et al., Mechanical material properties of polymethylmethacrylate (PMMA) for medical applications. Materials Testing, 2009. 51(4): p. 203-209. 13. Research, P.M. Polymethyl Methacrylate (PMMA) Market Share, Size, Trends, Industry Analysis Report, By Form (Pellets, Extruded Sheet, Cast Acrylic Sheet, Beads, Others); By End-Use; By Region; Segment Forecast, 2022 - 2030. Jul-2022. 14. Department of Statistics, M.o.E.A., Annual production volume of acrylic sheets. 2022, Department of Statistics, Ministry of Economic Affairs. 15. Vilaplana, F. and S. Karlsson, Quality concepts for the improved use of recycled polymeric materials: a review. Macromolecular Materials and Engineering, 2008. 293(4): p. 274-297. 16. Chandrasekaran, S.R., et al., Materials and energy recovery from e-waste plastics. ACS Sustainable Chemistry & Engineering, 2018. 6(4): p. 4594-4602. 17. Kikuchi, Y., et al., Design of recycling system for poly (methyl methacrylate)(PMMA). Part 1: recycling scenario analysis. The International Journal of Life Cycle Assessment, 2014. 19: p. 120-129. 18. Maris, J., et al., Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polymer Degradation and Stability, 2018. 147: p. 245-266. 19. Dimitris, S. and L. Achilias, Recent advances in the chemical recycling of polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA). Mater. Recycl. Trends Perspect, 2014. 3: p. 64. 20. Vaishnavi, M., et al., A critical review of the correlative effect of process parameters on pyrolysis of plastic wastes. Journal of Analytical and Applied Pyrolysis, 2023: p. 105907. 21. Moens, E.K., et al., Progress in reaction mechanisms and reactor technologies for thermochemical recycling of poly (methyl methacrylate). Polymers, 2020. 12(8): p. 1667. 22. Arisawa, H. and T. Brill, Kinetics and mechanisms of flash pyrolysis of poly (methyl methacrylate)(PMMA). Combustion and Flame, 1997. 109(3): p. 415-426. 23. Ding, Y., et al., Pyrolysis and combustion behavior study of PMMA waste from micro-scale to bench-scale experiments. Fuel, 2022. 319: p. 123717. 24. Ipiña, A.A., et al. Thermal oxidative decomposition estimation combining TGA and DSC as optimization targets for PMMA. in Journal of Physics: Conference Series. 2018. IOP Publishing. 25. Vaughan, P.W. and D.J. Highgate, Depolymerisation. 1997, Google Patents. 26. Sasaki, A., et al., Recovery method of pyrolysis product of resin. 2012, Google Patents. 27. Chub, O.V., J.-L. Dubois, and G.S. Patience, Tandem fluidized bed/milli-second fixed bed reactor produces methacrylic acid from poly (methyl methacrylate). Applied Catalysis A: General, 2022. 647: p. 118887. 28. Domingo, S.E. and A.B. Cabanero, Process and device for the regeneration of monomers starting from polymethacrylate and, more especially, methyl polymethacrylate. 1958, Google Patents. 29. Smolders, K. and J. Baeyens, Thermal degradation of PMMA in fluidised beds. Waste Management, 2004. 24(8): p. 849-857. 30. Kashiwagi, T., T. Hirata, and J.E. Brown, Thermal and oxidative degradation of poly (methyl methacrylate) molecular weight. Macromolecules, 1985. 18(2): p. 131-138. 31. Ferriol, M., et al., Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves. Polymer degradation and stability, 2003. 79(2): p. 271-281. 32. Caudle, B.H., M.B. Gorensek, and C.C. Chen, A rigorous process modeling methodology for biomass fast pyrolysis with an entrained‐flow reactor. Journal of Advanced Manufacturing and Processing, 2020. 2(1): p. e10031. 33. Humbird, D., et al., One-dimensional biomass fast pyrolysis model with reaction kinetics integrated in an aspen plus biorefinery process model. ACS Sustainable Chemistry & Engineering, 2017. 5(3): p. 2463-2470. 34. Kaminsky, W. and J. Franck, Monomer recovery by pyrolysis of poly (methyl methacrylate)(PMMA). Journal of Analytical and Applied Pyrolysis, 1991. 19: p. 311-318. 35. Achilias, D.S., Chemical recycling of poly (methyl methacrylate) by pyrolysis. Potential use of the liquid fraction as a raw material for the reproduction of the polymer. European Polymer Journal, 2007. 43(6): p. 2564-2575. 36. Keijsper, J., et al., “Green” MMA; an environmentally benign and economically attractive process for the production of methyl methacrylate. Recueil des Travaux Chimiques des Pays‐Bas, 1996. 115(4): p. 248-255. 37. Nagai, K. and T. Ui, Trends and future of monomer-MMA technologies. Sumitomo Chem, 2004. 2: p. 4-13. 38. Andraos, J., Complete green metrics evaluation of various routes to methyl methacrylate according to material and energy consumptions and environmental and safety impacts: test case from the chemical industry. ACS Sustainable Chemistry & Engineering, 2016. 4(1): p. 312-323. 39. Hindmarsh, A. and L. Petzold, LSODA, ordinary differential equation solver for stiff or non-stiff system. 2005. 40. Bangs Laboratories, I., Material Properties of Polystyrene and Poly(methyl methacrylate) (PMMA) Microspheres, Tech Support Doc 0021. April/2015. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93347 | - |
dc.description.abstract | 本研究顯示年處理量10,000噸之PMMA 壓克力廢料回收之熱裂解工業製程具有顯著的潛力。這項研究的重要突破克服了傳統建模方法的限制。透過整合反應動力學、熱力學和流體力學,所開發的反應模型對PMMA熱裂解過程提供了全面的分析。它可以評估操作參數及其影響,優化從PMMA廢料中回收MMA的過程,同時最小化能源消耗,並進一步擴大PMMA廢料處理的規模。
例如,此模型觀察到將初始加熱砂料進料溫度保持在950K可以防止不必要的MMA分解和副產物生成,同時實現最佳的PMMA轉化。最佳的砂料進料質量流速為8公斤/秒,氣體進料質量流速的最佳值為1公斤/秒。在這個範圍內操作確保了理想的MMA轉化率和後續步驟中氣固分離的最低成本。與工業上廣泛使用的ACH法生產MMA相比,這項研究透過PMMA熱裂解展示了每噸MMA的能源消耗較低的結果為4.91 GJ,低於工業ACH法的兩倍。這突顯新開發的流化床反應器在生產MMA中的潛力。 考慮到永續廢棄物管理製程的重要性,這些研究結果有助於開發高效且環保的PMMA廢料回收處理製程。在這一領域進一步的研究將推動PMMA廢料處理的進步,並支持向循環經濟的轉型。 | zh_TW |
dc.description.abstract | This PMMA pyrolysis process holds significant potential for effectively managing PMMA waste, aiming to handle 10,000 tons per year. One notable breakthrough of this research is the overcoming of limitations associated with traditional modeling approaches. By integrating reaction kinetics, thermodynamic considerations, and Fluidynamics, the developed model provides a comprehensive understanding of the PMMA pyrolysis process. It enables the evaluation of operational parameters and their impact, facilitating informed decisions to optimize MMA recovery from PMMA waste while minimizing energy consumption, and further scaling up the PMMA waste management process.
For example, it has been observed that maintaining the initial sand feed temperature at 950K prevents undesired MMA decomposition and byproduct formation, while achieving the best PMMA conversion. The optimal sand feed mass flow rate is 8 kg/s, and the gas feed mass flow rate has an optimal value of 1 kg/s. Operating within this range ensures desirable MMA conversion and the lowest cost for gas-solid separation in subsequent steps. In comparison to the widely used ACH process for MMA production, this research demonstrates a more favorable energy consumption outcome of 4.91 GJ per ton of MMA through PMMA pyrolysis, which is twice as low as the energy consumption of the industrial ACH process. This highlights the potential of the newly developed entrained flow reactor for MMA production. Considering the importance of sustainable waste management, these findings contribute to the development of efficient and environmentally friendly PMMA waste recycling processes. Further research in this field will advance PMMA waste management and support the transition to a circular economy. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:22:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-29T16:22:45Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 iii
中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Overview 1 1.1.1 PMMA Chemical/ Physical Properties 1 1.1.2 PMMA (Polymethyl methacrylate) Production 2 1.1.3 PMMA Industrial Applications 4 1.1.4 PMMA Market Size and Annual Production Volume 5 1.2 PMMA Recycling and Waste Management 6 1.2.1 Current Plastic Waste Management Issues 6 1.2.2 PMMA Circulaiton Lifecycle 8 1.2.3 Current PMMA Recycling Situation 11 1.3 PMMA Pyrolysis 13 1.3.1 Introduction of PMMA Pyrolysis Reaction Kinetics 13 1.3.2 PMMA Pyrolysis Kinetics: TGA/DTG Experiments 14 1.3.3 Current PMMA Pyrolysis Reactor Technology 15 1.3.4 Opportunities and Sustainability 17 1.4 Literature Review 18 1.4.1 PMMA Waste Recycling 18 1.4.2 Reaction Kinetics of PMMA Pyrolysis 19 1.4.3 Entrained Bed Reactor Model 20 1.4.4 Monomer Recovery by PMMA Pyrolysis 22 1.4.5 MMA Recovery Energy Consumption 23 1.5 Motivation 26 1.6 Organization 27 Chapter 2 Methods 29 2.1 Modeling Methodology 29 2.1.1 Entrained flow reactor for PMMA Pyrolysis 29 2.1.2 Continuity and Species Mass Balance 30 2.1.3 Momentum Balance 34 2.1.4 Energy Balance 36 2.1.5 PMMA Pyrolysis Reaction Kinetics 38 2.1.6 Kaminski Gas Decomposition 40 2.1.7 Calculation of Process Energy Consumption 41 2.2 Solution Method 42 Chapter 3 Development of pyrolysis reactor model 46 3.1 Model set-up 46 3.1.1 Initial Boundary Conditions 46 3.1.2 Thermodynamic Properties 47 3.1.3 Thermodynamic Properties: Heat Capacity 48 3.1.4 Thermodynamic Properties: Mass Enthalpy 50 Chapter 4 Results and Discussion 55 4.1 Optimal Case 55 4.2 Case 1 Varying Sand Feed Temperature 59 4.3 Case 2 Varying PMMA Particle Size 61 4.4 Case 3 Varying Sand Particle Size 62 4.5 Case 4 Varying Sand Feed Mass Flow Rate 64 4.6 Case 5 Varying Gas Feed Mass Flow Rate 65 4.7 Case 6 Sand recovery energy 67 4.7.1 Varying Initial Sand Temperature 67 4.7.2 Varying Initial Sand Mass Flow Rate 68 4.7.3 Varying Initial Gas Mass Flow Rate 69 4.8 Comparison of Process Energy Consumption 70 Chapter 5 Conclusions 72 REFERENCE 75 | - |
dc.language.iso | en | - |
dc.title | PMMA 壓克力廢塑料回收的熱裂解工業製程開發與優化 | zh_TW |
dc.title | Development and Optimization of a Novel Pyrolysis Process for PMMA Waste Recycling | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 余柏毅;陳誠亮;李豪業;汪進忠 | zh_TW |
dc.contributor.oralexamcommittee | Bor-Yih Yu;Cheng-Liang Chen;Hao-Yeh Lee;Jin-Zhong Wang | en |
dc.subject.keyword | PMMA裂解,逐步流化床反應器,反應動力學,優化,MMA回收,反應器設計,過程參數,可持續性,廢物管理, | zh_TW |
dc.subject.keyword | PMMA pyrolysis,Entrained flow reactor,Reaction kinetics,Optimization,MMA recovery,Reactor design,Process parameters,Sustainability,Waste management, | en |
dc.relation.page | 77 | - |
dc.identifier.doi | 10.6342/NTU202401697 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-15 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 2.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。