Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93343
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖國偉zh_TW
dc.contributor.advisorKuo-Wei Liaoen
dc.contributor.author林冠余zh_TW
dc.contributor.authorGuan-Yu Linen
dc.date.accessioned2024-07-29T16:21:29Z-
dc.date.available2024-07-30-
dc.date.copyright2024-07-29-
dc.date.issued2024-
dc.date.submitted2024-07-22-
dc.identifier.citation1. 行政院農業委員會水土保持局 (2017),水土保持手冊。
2. 陳學寬 (2020)。五溝水湧泉濕地生態防減災之評估。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/s3397b。
3. 莊曜成等人 (2023), JUN 2023 工程 • 96 卷 02 期 第106~120頁,自然解方於外傘頂洲防護應用。
4. 張瀚森 (2023)。棲地品質對新竹市濱海野生動物保護區遊憩價值之影響--生態系統文化服務觀點。﹝碩士論文。國立清華大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/hgn2g5。
5. 經濟部水利署第九河川局 (2020),鱉溪河川復育方案。
6. 經濟部水利署第十河川局 (2014),磺溪(含支流及河口海域)河川情勢調查。
7. 經濟部水利署第十河川局 (2020),磺溪水系及景美溪支流永定溪河川環境管理規劃。
8. 經濟部水利署第十河川局(交通大學) (2020),磺溪水系風險評估成果報告書。
9. 經濟部水利署第十河川局(以樂工程顧問) (2022),磺溪水系逕流分擔評估規劃暨流域整體改善與調適規劃(2/2)成果報告。
10. 經濟部水利署水利規劃分署 (2017),磺溪治理規劃檢討報告。
11. 經濟部水利署水利工程計畫透明網 (2020),鱉溪豐南堤段設施維修改善工程。
12. 賴桂文 (2016),HEC-RAS 水理模式 2D 模組介紹及應用。學術天地-工程技術 新知,1-17。
13. 戴浚哲 (2023)。洪水災害調適策略之效益與安全性評估 -以屏東縣保力溪為例。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/c7uehr。
14. 魏妤庭 (2022),高雄新市鎮開發之生態系統服務影響分析,中華民國環境工程學會2022環境資訊與規劃管理研討會。
15. 蘇語乾 (2021)。應用UAV空拍技術及HEC-RAS 2D水理模式於河川高灘地植生管理。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/73wp2d。
16. Adame, F., Santini, N., Tovilla, C., Vázquez-Lule, A. D., Castro, L., & Guevara, M. (2015). Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences, 12, 3805-3818. https://doi.org/10.5194/bg-12-3805-2015
17. Angela, A., Cohen-Shacham, E., Dalton, J., Edwards, S., Hessenberger, D., Maginnis, S., Maynard, S., McElwee, P., Murti, R., Nelson, C., Ruiz, V., Siikamäki, J., & Vasseur, L. (2020). Guidance for using the IUCN Global Standard for Nature-based Solutions: first edition. https://doi.org/10.2305/IUCN.CH.2020.09.en
18. Bai, L., Xiu, C., Feng, X., & Liu, D. (2019). Influence of urbanization on regional habitat quality:a case study of Changchun City. Habitat International, 93, 102042. https://doi.org/https://doi.org/10.1016/j.habitatint.2019.102042
19. Bauduceau, N., Berry, P., Cecchi, C., Elmqvist, T., Fernandez, M., Hartig, T., Krull, W., Mayerhofer, E., Sandra, N., & Noring, L. (2015). Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities: Final report of the horizon 2020 expert group on'nature-based solutions and re-naturing cities'.
20. Center for Watershed Protection (June 2013). Stormwater Management Guidebook.
21. Chiu, Y.-Y., Raina, N., & Chen, H.-E. (2022). Evolution of Flood Defense Strategies: Toward Nature-Based Solutions. Environments, 9(1).
22. Chris Spray, Andrew Black, Chris Bromley, Fiona Caithness, Jennifer Dodd, Alan MacDonald, Roberto Martinez Romero, Tommy McDermott, Hamish Moir, Lorraine Quinn, Helen Reid. (2021) Eddleston Water Report: Summary Report. ; Tweed Forum: Old Melrose, UK; Available online: https://tweedforum.org/eddleston-project-database/
23. Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97, 2016-2036.
24. Cross, M. (2017). Wallasea Island Wild Coast Project, UK: circular economy in the built environment. Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 170(1), 3-14. https://doi.org/10.1680/jwarm.16.00006
25. Echard, B., Gayton, N., & Lemaire, M. (2011). AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation. Structural Safety, 33(2), 145-154. https://doi.org/https://doi.org/10.1016/j.strusafe.2011.01.002
26. Echard, B., Gayton, N., Lemaire, M., & Relun, N. (2013). A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models. Reliability Engineering & System Safety, 111, 232-240. https://doi.org/https://doi.org/10.1016/j.ress.2012.10.008
27. European Commission, Directorate-General for Research and Innovation, (2021). Evaluating the impact of nature-based solutions : a handbook for practitioners, Publications Office of the European Union.
28. Faivre, N., Fritz, M., Freitas, T., de Boissezon, B., & Vandewoestijne, S. (2017). Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environmental Research, 159, 509-518. https://doi.org/https://doi.org/10.1016/j.envres.2017.08.032
29. Ferreira, C. S. S., Kašanin-Grubin, M., Solomun, M. K., Sushkova, S., Minkina, T., Zhao, W., & Kalantari, Z. (2023). Wetlands as nature-based solutions for water management in different environments. Current Opinion in Environmental Science & Health, 33, 100476. https://doi.org/https://doi.org/10.1016/j.coesh.2023.100476
30. Gaglio, M., Aschonitis, V., Pieretti, L., Santos, L., Gissi, E., Castaldelli, G., & Fano, E. A. (2019). Modelling past, present and future Ecosystem Services supply in a protected floodplain under land use and climate changes. Ecological Modelling, 403, 23-34. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2019.04.019
31. Gourevitch, J. D., Singh, N. K., Minot, J., Raub, K. B., Rizzo, D. M., Wemple, B. C., & Ricketts, T. H. (2020). Spatial targeting of floodplain restoration to equitably mitigate flood risk. Global Environmental Change, 61, 102050. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2020.102050
32. Hambäck, P. A., Dawson, L., Geranmayeh, P., Jarsjö, J., Kačergytė, I., Peacock, M., Collentine, D., Destouni, G., Futter, M., Hugelius, G., Hedman, S., Jonsson, S., Klatt, B. K., Lindström, A., Nilsson, J. E., Pärt, T., Schneider, L. D., Strand, J. A., Urrutia-Cordero, P., . . . Blicharska, M. (2023). Tradeoffs and synergies in wetland multifunctionality: A scaling issue. Science of The Total Environment, 862, 160746. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.160746
33. Hankin, B., Page, T., McShane, G., Chappell, N., Spray, C., Black, A., & Comins, L. (2021). How can we plan resilient systems of nature-based mitigation measures in larger catchments for flood risk reduction now and in the future? Water Security, 13, 100091. https://doi.org/https://doi.org/10.1016/j.wasec.2021.100091
34. Horton, B., Digman, C.J., Ashley, R.M. and McMullan, J. CIRIA (2019). B£ST Guidance – Guidance to assess the benefits of blue and green infrastructure using B£ST
35. Jodhani, K. H., Patel, D., & Madhavan, N. (2023). A review on analysis of flood modelling using different numerical models. Materials Today: Proceedings, 80, 3867-3876. https://doi.org/https://doi.org/10.1016/j.matpr.2021.07.405
36. Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., Haase, D., Knapp, S., Korn, H., & Stadler, J. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and society, 21(2).
37. Kadykalo, A. N., & Findlay, C. S. (2016). The flow regulation services of wetlands. Ecosystem Services, 20, 91-103. https://doi.org/https://doi.org/10.1016/j.ecoser.2016.06.005
38. Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri, S. M., ... & Zieher, T. (2021). Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Science of the Total Environment, 784, 147058.
39. Le Gouvello, R., Cohen-Shacham, E., Herr, D., Spadone, A., Simard, F., & Brugere, C. (2023). The IUCN Global Standard for Nature-based Solutions™ as a tool for enhancing the sustainable development of marine aquaculture [Original Research]. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1146637
40. Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Barret, K. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
41. Lemos, G. L. d., Eslabão, A. d. A., dos Santos, J. F., Rodrigues, A. T., Costa, L. F. d., Costa, H. K. d. M., Fagá, M. T. W., & Santos, E. M. d. (2024). Nature-based solutions experiences: A systematic literature review for public policies. Nature-Based Solutions, 5, 100121. https://doi.org/https://doi.org/10.1016/j.nbsj.2024.100121
42. Luo, M., Cai, J., Zeng, Z., Zheng, Y., & Lin, T. (2024). Development and practices of nature-based solutions in China. Nature-Based Solutions, 5, 100109. https://doi.org/https://doi.org/10.1016/j.nbsj.2023.100109
43. MacKinnon, K., Sobrevila, C., & Hickey, V. (2008). Biodiversity, climate change, and adaptation: nature-based solutions from the World Bank portfolio.
44. Mansourian, S., Doncheva, N., Valchev, K., & Vallauri, D. (2019). Lessons learnt from 20 years of floodplain forest restoration: the lower danube landscape. France: WWF.
45. Mashiyi, S., Weesakul, S., Vojinovic, Z., Sanchez Torres, A., Babel, M. S., Ditthabumrung, S., & Ruangpan, L. (2023). Designing and evaluating robust nature-based solutions for hydro-meteorological risk reduction. International Journal of Disaster Risk Reduction, 93, 103787. https://doi.org/https://doi.org/10.1016/j.ijdrr.2023.103787
46. Millennium ecosystem assessment, M. (2005). Ecosystems and human well-being (Vol. 5). Island press Washington, DC.
47. Morello, E., Mahmoud, I., Colaninno, N., (eds.) , (forthcoming in 2020). Catalogue of Nature-based solutions for urban regeneration, Energy & Urban Planning Workshop, School of Architecture Urban Planning Construction Engineering, Politecnico di Milano.
48. Natural Capital Project, 2023. InVEST 3.14.0. Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre and the Royal Swedish Academy of Sciences.
49. Ruangpan, L., Vojinovic, Z., Plavšić, J., Curran, A., Rosic, N., Pudar, R., Savic, D., & Brdjanovic, D. (2024). Economic assessment of nature-based solutions to reduce flood risk and enhance co-benefits. Journal of Environmental Management, 352, 119985. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.119985
50. Saikia, P., Beane, G., Garriga, R. G., Avello, P., Ellis, L., Fisher, S., Leten, J., Ruiz-Apilánez, I., Shouler, M., Ward, R., & Jiménez, A. (2022). City Water Resilience Framework: A governance based planning tool to enhance urban water resilience. Sustainable Cities and Society, 77, 103497. https://doi.org/https://doi.org/10.1016/j.scs.2021.103497
51. Saquib, S., Gupta, A., & Joshi, A. (2022). Chapter 21 - Emerging water crisis: Impact of urbanization on water resources and constructed wetlands as a nature-based solution (NbS). In A. L. Srivastav, S. Madhav, A. K. Bhardwaj, & E. Valsami-Jones (Eds.), Current Directions in Water Scarcity Research (Vol. 6, pp. 447-468). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-91838-1.00021-X
52. Science for Environment Policy. (2021). The Solution is in Nature. Future Brief 24. Brief Produced for the European Commission DG Environment.
53. Sowińska-Świerkosz, B., & García, J. (2021). A new evaluation framework for nature-based solutions (NBS) projects based on the application of performance questions and indicators approach. Science of The Total Environment, 787, 147615. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.147615
54. Su, J., Wang, M., Zhang, D., Yuan, H., Zhou, S., Wang, Y., & Adib Mohammad Razi, M. (2024). Integrating technical and societal strategies in Nature-based Solutions for urban flood mitigation in Guangzhou, a heritage city. Ecological Indicators, 162, 112030. https://doi.org/https://doi.org/10.1016/j.ecolind.2024.112030
55. Tang, F., Fu, M., Wang, L., & Zhang, P. (2020). Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecological Indicators, 117, 106719. https://doi.org/https://doi.org/10.1016/j.ecolind.2020.106719
56. The Mersey Forest, Natural Economy Northwest, CABE, Natural England, Yorkshire Forward, The Northern Way, Design for London, Defra, Tees Valley Unlimited, Pleasington Consulting Ltd, and Genecon LLP (2010). GI-Val: the green infrastructure valuation toolkit. Version 1.6 (updated in 2018).
57. Thedy, J., & Liao, K.-W. (2023). Adaptive Kriging Adopting PSO with Hollow-Hypersphere space in structural reliability assessment. Probabilistic Engineering Mechanics, 74, 103513. https://doi.org/https://doi.org/10.1016/j.probengmech.2023.103513
58. Thorslund, J., Jarsjo, J., Jaramillo, F., Jawitz, J. W., Manzoni, S., Basu, N. B., Chalov, S. R., Cohen, M. J., Creed, I. F., Goldenberg, R., Hylin, A., Kalantari, Z., Koussis, A. D., Lyon, S. W., Mazi, K., Mard, J., Persson, K., Pietro, J., Prieto, C., . . . Destouni, G. (2017). Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 108, 489-497. https://doi.org/https://doi.org/10.1016/j.ecoleng.2017.07.012
59. Vymazal, J. (2024). Natural and constructed wetlands for ecosystem restoration (at the occasion of 30 years anniversary of Ecological Engineering journal). Ecological Engineering, 201, 107188. https://doi.org/https://doi.org/10.1016/j.ecoleng.2024.107188
60. Yimer, E. A., De Trift, L., Lobkowicz, I., Villani, L., Nossent, J., & van Griensven, A. (2024). The underexposed nature-based solutions: A critical state-of-art review on drought mitigation. Journal of Environmental Management, 352, 119903. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.119903
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93343-
dc.description.abstract現今人類環境與社會面臨日益複雜的挑戰,在水利工程領域,洪水治理之觀念逐漸迎來典範轉移(paradigm shift),由採用灰色基礎設施之傳統工程解方轉向多目標、更為永續、以生態為基礎的自然解方(nature-based solutions)。這個轉變不僅關乎個別流域的洪水風險,亦對全球氣候變遷的適應性產生影響。然而,儘管NbS的潛力已被廣泛討論,對於其具體應用和評估仍缺乏明確架構。本研究的主要目的在於建立通用且可靠的NbS導入與評估流程,並實際應用於磺溪流域,以評估自然解方在降低洪水風險、其它生態系服務價值等方面的效果,填補NbS缺乏系統性方法的空白。
為實現上述目的,本研究參考2020年IUCN發布的NbS全球標準,建立一個五階段的NbS導入流程以及工作細項。本研究以磺溪流域作為案例,盤點背景資料,結合利害關係人之意見訂定改善指標,並設計具體的濕地方案。運用多種工具,包括HEC-RAS、InVEST和自適應克利金可靠度分析,來評估基線與NbS方案之間的差異並描述NbS效益。最後,將可靠度分析成果轉化為工程師慣用的安全係數,考慮氣候和地理條件下的不確定性因素,科學地量化自然解方在特定防洪標準下之安全性。
效益評估的主要發現包括:濕地設計方案在50年重現期洪水情境下能夠減少磺溪下游土地淹水面積約9.86%,在2年重現期洪水情境下減少約3.95%;規劃濕地設計方案將提高磺溪舊河道之碳儲存量75.74%並減少實際土壤侵蝕量50.77%,棲地適合度將保持在相似水平;濕地設計方案有助於減低洪水風險,淹水發生機率降至3%,等同於安全係數1.37。
此外,本研究嘗試將IUCN的NbS自我評估工具應用於濕地設計方案,總分為30分(部分相符)。結果顯示,濕地設計方案在應對社會挑戰及基於包容、透明和賦權的治理過程方面具有優勢,但在經濟可行性、公平與平衡地權衡、適應性管理和主流化等標準方面尚未達到要求。自我評估工具有助於辨識行動方案與NbS全球標準的相符程度、釐清關鍵問題,並提供具體改善方向。
本研究建立標準的NbS導入及評估流程,並綜合評估NbS在不同方面的效果,作為NbS應用的示範案例,為水利工程領域的研究和實務提供重要支持和參考。
zh_TW
dc.description.abstractIn response to the increasingly complex challenges faced by our environment and society, there's a paradigm shift in flood management practices within the field of hydraulic engineering. Traditional approaches using gray infrastructure are giving way to Nature-based Solutions (NbS), which prioritize sustainability and ecosystem-based approaches. Despite widespread discussions about NbS potential, there's a lack of a clear framework for its application and evaluation.
The main objective of this study is to establish a universal and reliable process for the implementation and assessment of NbS, applied practically in the Huang River Watershed. This aims to evaluate the effectiveness of NbS in aspects such as flood risk and the value of ecosystem services, addressing the existing gap in systematic methods for NbS.
By referencing the 2020 global NbS standards from the IUCN, the study creates a five-stage process and tasks for NbS implementation. To evaluate the effectiveness of the implemented measures, several methods such as hydraulic analysis using HEC-RAS 2D, ecosystem service assessment via Integrate Valuation of Ecosystem Services and Tradeoffs (InVEST), and risk analysis through reliability analysis are adopted.
The key findings of the benefit assessment include: the designed wetland can reduce the flooded area in the downstream of Huang River by 9.86% for 1 in 50 year flood event and by 3.95% for 1 in 2 year flood event; the designed wetland will increase carbon storage in the old river channel of Huang River by 75.74% and reduce actual soil erosion by 50.77%, while habitat quality will be maintained at a similar level; the designed wetland contributes to lowering flood risk, reducing the probability of flooding to 3%, equivalent to a safety factor of 1.37.
Additionally, this study applies the IUCN’s NbS self-assessment tool to the designed wetland, resulting in a total score of 30 (Partial). The results indicate that the designed wetland demonstrates strengths in addressing societal challenges and governance processes based on inclusiveness, transparency, and empowerment. However, it falls short in meeting the standards for economic feasibility, fair and balanced trade-offs, adaptive management, and mainstreaming. The self-assessment tool could help in identifying the alignment of the action plan with the NbS global standards, clarifying key issues, and providing specific directions for improvement.
In summary, this study serves as a demonstration case for NbS application, providing a clear process for NbS implementation It comprehensively evaluates the effects of NbS across various dimensions. The outcomes of this study provide valuable support and reference for research and practices in the field of hydraulic engineering.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:21:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-29T16:21:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
Abstract III
目次 V
圖次 VII
表次 IX
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究流程 2
1.3 論文架構 4
1.4 研究區域 5
第二章 文獻回顧 7
2.1 自然解方(Nature-based Solutions) 7
2.2 二維水理模式 11
2.3 生態系服務價值評估 12
2.4 可靠度分析 15
第三章 研究方法 17
3.1 NbS導入流程 17
3.2 NbS效益評估方法 20
3.3 二維水理分析 20
3.4 生態系服務分析 31
3.5 可靠度分析 39
3.6 自我評估工具 (Self-Assessment Tools) 46
第四章 結果與討論 50
4.1 磺溪流域之NbS導入 50
4.2 二維水理分析 54
4.3 生態系服務分析 66
4.4 可靠度分析與安全係數 73
4.5 自我評估工具 (Self-Assessment Tools) 75
第五章 結論與建議 79
5.1 結論 79
5.2 建議 81
參考文獻 83
附錄 90
-
dc.language.isozh_TW-
dc.title磺溪流域洪水治理自然解方可行性評估zh_TW
dc.titleFeasibility Assessment of Nature-based Solutions for Flood Management in the Huang River Basinen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖桂賢;許少瑜zh_TW
dc.contributor.oralexamcommitteeKuei-Hsien Liao;Shao-Yiu Hsuen
dc.subject.keyword自然解方,洪水管理,生態系服務價值,生態防減災,可靠度分析,zh_TW
dc.subject.keywordNature-based solutions,Flood risk management,Ecosystem service value,Eco-DRR,Reliability analysis,en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202402067-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-23-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved