Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93326Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 吳文方 | zh_TW |
| dc.contributor.advisor | Wen-Fang Wu | en |
| dc.contributor.author | 陳建中 | zh_TW |
| dc.contributor.author | Chien-Chung Chen | en |
| dc.date.accessioned | 2024-07-29T16:16:17Z | - |
| dc.date.available | 2024-07-30 | - |
| dc.date.copyright | 2024-07-29 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-22 | - |
| dc.identifier.citation | [1] Y. Wang, R. C. M. Yam, M. J. Zuo, and P. Tse, “A comprehensive reliability allocation method for design of CNC lathes,” Reliability Engineering & System Safety, Vol. 72, No. 3, pp. 247-252, Jun. 2001.
[2] M. Zhang, Y. Cao, Z. Fang, and B. Chen, “Research on reliability distribution technology of CNC lathe HTC 2050,” 2016 ISCT Conference on Advances in Computer Science Research, Vol. 64, Jan. 2016. [3] M. Tucci, F. D.B Carlo, O. Borgia, and N. Fanciullacci, “Accelerated life tests as an integrated methodology for product design, qualification and production control: a case study in household appliances,” Production & Manufacturing Research: An Open Access Journal, Vol. 2, No. 1, pp.112-127, Feb. 2014. [4] V. Duraccio, F. D. Felice, G. Bona, A. Forcina, and A. Silvestri, “Validation and application of a reliability allocation technique (advanced integrated factors method) to an industrial system,” Proceedings of the IASTED Conference on Modelling, Identification and Control, Feb. 2014. [5] K. K. Aggarwal, Reliability Engineering, Springer Science + Business Media, Dordrecht, Oct. 1993. [6] S. H. Dai and M. O. Wang, Reliability Analysis in Engineering Application, Van Nostrand Reinhold, June 1992. [7] V. Duraccio, L. Compagno, N. Trapani, and A. Forcina, “Failure prevention through performance evaluation of reliability components in working condition,” Journal of Failure Analysis and Prevention, Vol. 16, pp.1092-1100, Oct. 2016. [8] L. M. Clement, “Reliability of military electronic equipment,” Journal of the British Institution of Radio Engineers, Vol. 16, No. 9, pp.488-495, Sep. 1956. [9] V. J. Bracha, “The methods of reliability engineering,” Machine Design, pp. 70-76, Feb. 1964. [10] E. D. Karmiol, Reliability Apportionment, Preliminary Report EIAM-5, Task. II, General Electric, Apr. 1965. [11] Y. C. Chang, K. H. Chang, and C. S. Liaw, “Innovative reliability allocation using the maximal entropy ordered weighted averaging method,” Computers & Industrial Engineering, Vol. 57, No. 4, pp. 1274-1281, Nov. 2009. [12] C. H. Cheng, and J. R. Chang, “MCDM aggregation model using situational Me-OWA and Me-OWGA operators,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 14, No. 4, pp. 421-443, Aug. 2006. [13] K. H. Chang, C. H. Cheng, and Y. C. Chang, “Reliability assessment of an aircraft propulsion system using IFS and OWA tree,” Engineering Optimization, Vol. 40, No. 10, pp. 907-921, Sep. 2008. [14] R.R. Yager, “On ordered weighted averaging aggregation operators in multicriteria decision making,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 18, No. 1, pp.183-190, Jan. 1988. [15] 楊善國,可靠度工程概論,第六版,全華圖書股份有限公司,台灣,2019。 [16] C. E. Ebeling, An Introduction to Reliability and Maintainability Engineering, McGraw-Hill Inc, 1996. [17] F. Chen, X. Chen, Q. Xie, and B. Xu, “Reliability analysis of numerical control lathe based on the field data,” International Conference on Manufacturing Science and Engineering, Jan. 2013. [18] Y. Wang, Y. Jia, J. Yu, Y. Zheng, and S. Yi, “Failure probabilistic model of CNC lathes,” Reliability Engineering & System Safety, Vol. 65, No. 3, pp. 307-314, Sep. 1999. [19] F. L. Li, “The failure diagnosis and reliability growth technology research of the CAK3675V CNC lathes,” Suzhou Chien-Shiung Institute of Technology, Taicang 215400, Vol. 39, No. 11, pp. 71-76, May. 2012. [20] Y. W. Wang, Z. S. Wen, and G. X. Shen, “Inherent and operational reliability of CNC lathe,” Natural Science Journal of Jilin University of Technology, Vol. 30, No. l, pp. 87-59, Jan. 2000. [21] A. Andhare, C. K. Tiger, and S. Ahmed, “Failure analysis of machine tools using GTMA and MADM method,” International Journal of Engineering Research & Technology (IJERT), Vol. 1, No. 6, Aug. 2012. [22] Z. Yang, J. Guo, H. Tian, C. Chen, Y. Zhu, and J. Liu, “Weakness ranking method for subsystems of heavy-duty machine tools based on FMECA information,” Chinese Journal of Mechanical Engineering, Vol. 34, No. 17, Feb. 2021. [23] S. Saravanan, G. S. Yadava, and P. V. Rao “Machine tool failure data analysis for condition monitoring application,” Proceedings of the 11th National Conference on Machines and Mechanism, Delhi, India, Jan. 2003. [24] X. Zhu1,3, J. Bao, J. Wang1, F. Chen1, X. Li, and X. Zhang, “A comprehensive maintainability evaluation methods for subsystems of CNC machine tools,” Journal of Physics: Conference Series, Volume 1074, The International Conference on Mechanical, Electric and Industrial Engineering (MEIE2018), Hangzhou, China, May. 2018. [25] 曹芷欣,工具機安全系統之可靠度研究,國立臺灣海洋大學機械與機電工程學系碩士論文,2018。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93326 | - |
| dc.description.abstract | 在CNC (Computer Numerical Control)車床的開發中,可靠度設計與分析是一個至關重要的環節。針對可靠度設計,需要建立一套周詳準則,將CNC車床被要求之系統可靠度合理分配至各子系統及零組件。就此,本研究將一CNC車床拆解成八個子系統,並提出七項可靠度分配準則。在每一準則中,考量子系統對系統重要程度之不同,賦予各子系統相對權重。在分析方面,本研究建構一種全面故障率分配方法,首先確認CNC車床整體系統之平均故障間隔時間(Mean Time Between Failure, MTBF),將其換算成故障率,再根據前述分配準則與權重將系統故障率合理分配至各子系統,並探討各子系統故障率、MTBF及其它可靠度指標差異的情況。源由於所蒐尋兩岸文獻資料與數據之不同,本研究也兼探討兩岸學者在CNC車床可靠度研究上的差異。透過案例示範,相信本研究所提可靠度分配方法可做為CNC車床或其它工具機可靠度設計與分析之參考。 | zh_TW |
| dc.description.abstract | In the development of CNC (Computer Numerical Control) lathes, a crucial stage is reliability design and analysis. For reliability design, it is necessary to establish a comprehensive set of criteria to reasonably allocate the required system reliability of the CNC lathe to various subsystems and components. To this end, this study breaks down a CNC lathe into eight subsystems and proposes seven reliability allocation criteria. Within each criterion, considering the relative importance of subsystems to the overall system, relative weights are assigned to each subsystem. In terms of reliability analysis, this study constructs a comprehensive fault rate allocation method. It first determines the Mean Time Between Failure (MTBF) of the overall CNC lathe system, converts it to a fault rate, and then reasonably allocates the system fault rate to each subsystem based on the aforementioned allocation criteria and weights. The study also explores the differences in fault rates, MTBFs, and other reliability indicators among subsystems. Due to differences in the literature and data collected from both sides of the Taiwan Strait, this study also examines the disparities in CNC lathe reliability research between scholars of both sides. Through case demonstrations, we believe that the reliability allocation method proposed in this study can serve as a reference for reliability design and analysis of CNC lathes or other machine tools. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:16:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-29T16:16:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 I
ABSTRACT II 目次 III 圖次 VI 表次 IX 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 2 1.3論文架構 3 第二章 車床工具機概論 5 2.1 CNC車床組成 5 2.1.1 CNC定義 5 2.1.2車床種類介紹 5 2.1.3 車床工作模式 6 2.1.4 CNC臥式單軸車床子系統介紹 7 第三章 可靠度相關概論 9 3.1機率基本概念以及隨機事件 9 3.2可靠度概念 10 3.2.1基本定義 10 3.2.2常見機率分布函數 13 3.3浴缸曲線 15 3.4可靠度分配概論 16 3.4.1可靠度分配準則 17 3.4.2可靠度分配方法 18 3.5系統可靠度 19 3.5.1串聯系統 20 3.5.2並聯系統 20 3.5.3串並聯系統 21 3.5.4並串聯系統 22 3.5.5 CNC車床系統模型 23 第四章 問卷調查與分配過程及結果 25 4.1 不同準則下之調查結果與探討 25 4.1.1 故障頻率… 25 4.1.2 故障嚴重度 27 4.1.3 維護困難度 28 4.1.4 複雜度 29 4.1.5 非先進製造技術度 30 4.1.6 工作環境劣質度 31 4.1.7 成本 33 4.2 相關矩陣與向量指標 34 4.2.1故障率分配比矩陣B^k與故障率分配因子矩陣F 34 4.2.2 故障率分配因子矩陣F矩陣 36 4.2.3 權重與故障率分配向量 36 4.3 故障率分配結果 37 4.3.1 CNC車床總系統MTBF = 500 h (λ_s=0.002/h) 37 4.3.2 CNC車床總系統MTBF = 1300 h (λ_s=0.00077/h) 38 第五章 CNC車床系統之可靠度分析 39 5.1子系統可靠度分析(MTBF = 500 h) 39 5.1.1 刀塔子系統 39 5.1.2 鎖模子系統 42 5.1.3 電子子系統 44 5.1.4 主傳動子系統 46 5.1.5 進給子系統 49 5.1.6 液壓子系統 51 5.1.7 冷卻子系統 53 5.1.8 防護子系統 55 5.2子系統可靠度分析(MTBF = 1300 h) 57 5.2.1 刀塔子系統 57 5.2.2 鎖模子系統 60 5.2.3 電子子系統 62 5.2.4 主傳動子系統 64 5.2.5 進給子系統 66 5.2.6 液壓子系統 68 5.2.7 冷卻子系統 70 5.2.8 防護子系統 72 5.3結果與討論 74 第六章 結論 76 參考文獻 78 附錄 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 可靠度設計 | zh_TW |
| dc.subject | CNC車床 | zh_TW |
| dc.subject | 平均故障間隔時間 | zh_TW |
| dc.subject | 故障率 | zh_TW |
| dc.subject | 可靠度分配 | zh_TW |
| dc.subject | reliability allocation | en |
| dc.subject | fault rate | en |
| dc.subject | Mean Time Between Failure (MTBF) | en |
| dc.subject | reliability design | en |
| dc.subject | CNC lathe | en |
| dc.title | CNC車床之可靠度設計與分析 | zh_TW |
| dc.title | Reliability Design and Analysis of CNC Lathes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李志中;林正平 | zh_TW |
| dc.contributor.oralexamcommittee | Jyh-Jone Lee;Chang-Pin Lin | en |
| dc.subject.keyword | CNC車床,可靠度設計,可靠度分配,故障率,平均故障間隔時間, | zh_TW |
| dc.subject.keyword | CNC lathe,reliability design,reliability allocation,fault rate,Mean Time Between Failure (MTBF), | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202402058 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-23 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf | 6.08 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
