Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93276
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊全zh_TW
dc.contributor.advisorChiun-Chuan Chenen
dc.contributor.author吳政軒zh_TW
dc.contributor.authorZheng-Xuan Wuen
dc.date.accessioned2024-07-23T16:38:18Z-
dc.date.available2024-07-24-
dc.date.copyright2024-07-23-
dc.date.issued2024-
dc.date.submitted2024-07-18-
dc.identifier.citation[1] C.-C. Chen and L.-C. Hung. A maximum principle for diffusive lotka–volterra systems of two competing species. Journal of Differential Equations, 261(8):4573 4592, 2016.
[2] C.-C. Chen, L.-C. Hung, M. Mimura, and D. Ueyama. Exact travelling wave solutions of three-species competition–diffusion systems. Discrete and Continuous Dynamical Systems- B, 17(8):2653–2669, Jun 2012.
[3] Y.-S. ChenandJ.-S.Guo. Travelingwavesolutionsforathree-species predator–prey model with two aborigine preys. Japan Journal of Industrial and Applied Mathematics, 38(2):455–471, Jun 2021.
[4] Y.-Y. Chen, J.-S. Guo, and C.-H. Yao. Traveling wave solutions for a continuous and discrete diffusive predator–prey model. Journal of Mathematical Analysis and Applications, 445(1):212–239, 2017.
[5] S.-C. Fu, M. Mimura, and J.-C. Tsai. Traveling waves for a three-component reaction–diffusion model of farmers and hunter-gatherers in the neolithic transition. Journal of Mathematical Biology, 82(4):26, Mar 2021.
[6] J.-S. Guo. Traveling wave solutions for some three-species predator-prey systems. Tamkang Journal of Mathematics, 52(1):25–36, Jan. 2021.
[7] J.-S. Guo, K.-I. Nakamura, T. Ogiwara, and C.-C. Wu. Traveling wave solutions for a predator–prey system with two predators and one prey. Nonlinear Analysis: Real World Applications, 54:103111, 2020.
[8] P. Hartman. Ordinary differential equations. SIAM, 2002.
[9] S. Ma. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. Journal of Differential Equations, 171(2):294–314, 2001.
[10] M. Rodrigo and M. Mimura. Exact solutions of reaction-diffusion systems and nonlinear wave equations. Japan Journal of Industrial and Applied Mathematics, 18(3):657–696, Oct 2001.
[11] C.-H. Wu, D. Xiao, and M. Zhou. Sharp estimates for the spreading speeds of the lotka-volterra competition-diffusion system: the strong-weak type, 2022.
[12] J. Wu and X. Zou. Traveling wave fronts of reaction-diffusion systems with delay. Journal of Dynamics and Differential Equations, 13(3):651–687, Jul 2001.
[13] Z.-X. Yu and R.Yuan. Traveling waves for a lotka–volterra competition system with diffusion. Mathematical and Computer Modelling, 53(5):1035–1043, 2011.
[14] T. Zhang and Y. Jin. Traveling waves for a reaction–diffusion–advection predator prey model. Nonlinear Analysis: Real World Applications, 36:203–232, 2017.
[15] 楊哲瑋. 兩物種的羅特卡-弗爾特拉擴散競爭方程組之非單調行波解. Master’s thesis, 國立臺灣大學,Jan 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93276-
dc.description.abstract這篇論文主要研究多物種的羅特卡-弗爾特拉擴散競爭系統(Lotka-Volterra competitive system with diffusion)。我們透過研究行波解以了解該系統,並成功證明連接 O := (0,0,··· ,0) 和 e1 := (1,0,··· ,0) 兩個平衡態的非單調解的存在性。關於這方面的研究在過去的文獻中相當稀少。然而,這類非單調解在生態學中具有重要意義,它可以啟發我們發現一些特殊現象。我們主要的研究方法為利用 Schauder 不動點定理,以及合適的上下解來證明解的存在性,並通過縮小區間的方法來描述z→∞時的漸近行為。另外,透過證明不存在速度小於某個特定值 s∗ 的解,我們找出該系統行波解的最小速度。zh_TW
dc.description.abstractThis focuses on the n-species Lotka-Volterra competitive system with diffusion. Understanding traveling wave solutions is essential for gaining insights into this dynamical system. We successfully show the existence of non-monotonic pulse-front traveling wave solutions that connect two equilibriums O := (0,··· ,0) and e1 := (1,0,··· ,0). These solutions are significant in ecology and can inspire the exploration of other intriguing phenomena within the Lotka-Volterra system. To prove the existence of traveling wave solutions, we rely on the application of the Schauder fixed-point theorem and appropriate upper-lower solutions. A key breakthrough in our work is the construction of these suitable upper-lower solutions for the competition system. Additionally, the concept of shrinking rectangles is employed to deduce the asymptotic behavior when z → ∞. Furthermore, by proving the non-existence of traveling wave solutions at speeds below a critical threshold s∗, we identify the minimum speed of traveling wave solutions for this model.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:38:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-23T16:38:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
摘要 ii
Abstract iii
Contents iv
1. Introduction 1
2. General Theory 3
3. Upper-lower Solution 6
4. Asymptotic Behavior 10
5. Minimal speed 12
References 13
-
dc.language.isoen-
dc.subject上下解zh_TW
dc.subject羅特卡-弗爾特拉競爭zh_TW
dc.subjectupper-lower-solutionen
dc.subjectLotka–Volterra competitive systemen
dc.title多物種的羅特卡-弗爾特拉擴散競爭方程組之非單調行波解zh_TW
dc.titleNon-monotone traveling wave solutions for the n-species Lotka-Volterra competitive system with diffusionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳逸昆;王振男;陳建隆zh_TW
dc.contributor.oralexamcommitteeI-Kun Chen;Jenn-Nan Wang;Jann-Long Chernen
dc.subject.keyword羅特卡-弗爾特拉競爭,上下解,zh_TW
dc.subject.keywordLotka–Volterra competitive system,upper-lower-solution,en
dc.relation.page14-
dc.identifier.doi10.6342/NTU202401349-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-18-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved