請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93255
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝玉德 | zh_TW |
dc.contributor.advisor | Yu-Te Hsieh | en |
dc.contributor.author | 楊博凱 | zh_TW |
dc.contributor.author | Po-Kai Yang | en |
dc.date.accessioned | 2024-07-23T16:31:51Z | - |
dc.date.available | 2024-07-24 | - |
dc.date.copyright | 2024-07-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-13 | - |
dc.identifier.citation | Andersen, R. A. (2005). Algal culturing techniques. Elsevier.
Bacon, M. P., & Edmond, J. M. (1972). Barium at GEOSECS III in the Southwest Pacific. Earth and Planetary Science Letters, 16(1), 66-74. Ban, Y., Aida, M., Nomura, M., & Fujii, Y. (2002). Zinc isotope separation by ligand exchange chromatography using cation exchange resin. Journal of Ion Exchange, 13(2), 46-52. Bates, S. L., Hendry, K. R., Pryer, H. V., Kinsley, C. W., Pyle, K. M., Woodward, E. M. S., & Horner, T. J. (2017). Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic. Geochimica et Cosmochimica Acta, 204, 286-299. Bendif, E. M., Probert, I., Young, J. R., & von Dassow, P. (2015). Morphological and phylogenetic characterization of new Gephyrocapsa isolates suggests introgressive hybridization in the Emiliania/Gephyrocapsa complex (Haptophyta). Protist, 166(3), 323-336. Bernstein, R. E., Byrne, R. H., & Schijf, J. (1998). Acantharians: a missing link in the oceanic biogeochemistry of barium. Deep Sea Research Part I: Oceanographic Research Papers, 45(2-3), 491-505. Bishop, J. K. (1988). The barite-opal-organic carbon association in oceanic particulate matter. Nature, 332(6162), 341-343. Bridgestock, L., Hsieh, Y.-T., Porcelli, D., Homoky, W. B., Bryan, A., & Henderson, G. M. (2018). Controls on the barium isotope compositions of marine sediments. Earth and Planetary Science Letters, 481, 101-110. Carter, S. C., Paytan, A., & Griffith, E. M. (2020). Toward an improved understanding of the marine barium cycle and the application of marine barite as a paleoproductivity proxy. Minerals, 10(5), 421. Charbonnier, Q., Bouchez, J., Gaillardet, J., & Gayer, É. (2020). Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin. Biogeosciences, 17(23), 5989-6015. Chen, C. C., Rodriguez, I. B., Chen, Y. l. L., Zehr, J. P., Chen, Y. R., Hsu, S. T. D., Yang, S. C., & Ho, T. Y. (2022). Nickel superoxide dismutase protects nitrogen fixation in Trichodesmium. Limnology and Oceanography Letters, 7(4), 363-371. Chen, Y. B., Zehr, J. P., & Mellon, M. (1996). Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. Ims 101 in defined media: evidence for a circadian rhythm 1. Journal of phycology, 32(6), 916-923. Chow, T. J., & Goldberg, E. (1960). On the marine geochemistry of barium. Geochimica et Cosmochimica Acta, 20(3-4), 192-198. Chowdhury, M., Biswas, H., Sharma, D., Silori, S., & Winter, A. (2022). Distribution of extant coccolithophores from the northwest continental shelf of India during the summer monsoon. Phycologia, 61(3), 284-298. Church, T. M., & Wolgemuth, K. (1972). Marine barite saturation. Earth and Planetary Science Letters, 15(1), 35-44. Cutter, G., Andersson, P., Codispoti, L., Croot, P., Francois, R., Lohan, M., Obata, H., & Rutgers vd Loeff, M. (2010). Sampling and sample-handling protocols for GEOTRACES cruises. de La Rocha, C. L., Brzezinski, M. A., & DeNiro, M. J. (1997). Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochimica et Cosmochimica Acta, 61(23), 5051-5056. Dehairs, F., Chesselet, R., & Jedwab, J. (1980). Discrete suspended particles of barite and the barium cycle in the open ocean. Earth and Planetary Science Letters, 49(2), 528-550. Dymond, J., & Collier, R. (1996). Particulate barium fluxes and their relationships to biological productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 43(4-6), 1283-1308. Dymond, J., Suess, E., & Lyle, M. (1992). Barium in deep‐sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7(2), 163-181. Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., & Murray, R. W. (2003). A comparison between excess barium and barite as indicators of carbon export. Paleoceanography, 18(1). Edmond, J. M. (1970). Comments on the paper by TL Ku, YH Li, GG Mathieu, and HK Wong,“Radium in the Indian‐Antarctic Ocean south of Australia”. Journal of Geophysical Research, 75(33), 6878-6883. Fisher, N. S., Guillard, R. R., & Bankston, D. C. (1991). The accumulation of barium by marine phytoplankton grown in culture. Journal of marine research, 49(2), 339-354. Ganeshram, R. S., François, R., Commeau, J., & Brown-Leger, S. L. (2003). An experimental investigation of barite formation in seawater. Geochimica et Cosmochimica Acta, 67(14), 2599-2605. Gerringa, L., De Baar, H., & Timmermans, K. (2000). A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA. Marine Chemistry, 68(4), 335-346. Gonzalez-Muñoz, M., Martinez-Ruiz, F., Morcillo, F., Martin-Ramos, J., & Paytan, A. (2012). Precipitation of barite by marine bacteria: A possible mechanism for marine barite formation. Geology, 40(8), 675-678. Gou, L.-F., Jin, Z., Galy, A., Gong, Y.-Z., Nan, X.-Y., Jin, C., Wang, X.-D., Bouchez, J., Cai, H.-M., & Chen, J.-B. (2020). Seasonal riverine barium isotopic variation in the middle Yellow River: Sources and fractionation. Earth and Planetary Science Letters, 531, 115990. Guillard, R., & Morton, S. (2003). Culture methods. Manual on harmful marine microalgae. UNESCO, Paris, 77-97. Guillard, R. R. (1975). Culture of phytoplankton for feeding marine invertebrates. Culture of marine invertebrate animals: proceedings—1st conference on culture of marine invertebrate animals greenport, Harris, A., Medlin, L., Lewis, J., & Jones, K. (1995). Thalassiosira species (Bacillariophyceae) from a Scottish sea-loch. European Journal of Phycology, 30(2), 117-131. Heimann, K., & Huerlimann, R. (2015). Microalgal classification: major classes and genera of commercial microalgal species. In Handbook of marine microalgae (pp. 32). Elsevier. Ho, T. Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski, P. G., & Morel, F. M. (2003). The elemental composition of some marine phytoplankton. Journal of phycology, 39(6), 1145-1159. Horner, T. J., & Crockford, P. W. (2021). Barium isotopes: Drivers, dependencies, and distributions through space and time. Cambridge University Press. Horner, T. J., Kinsley, C. W., & Nielsen, S. G. (2015). Barium-isotopic fractionation in seawater mediated by barite cycling and oceanic circulation. Earth and Planetary Science Letters, 430, 511-522. Horner, T. J., Pryer, H. V., Nielsen, S. G., Crockford, P. W., Gauglitz, J. M., Wing, B. A., & Ricketts, R. D. (2017). Pelagic barite precipitation at micromolar ambient sulfate. Nature communications, 8(1), 1-11. Hsieh, Y.-T., Bridgestock, L., Scheuermann, P. P., Seyfried Jr, W. E., & Henderson, G. M. (2021). Barium isotopes in mid-ocean ridge hydrothermal vent fluids: A source of isotopically heavy Ba to the ocean. Geochimica et Cosmochimica Acta, 292, 348-363. Hsieh, Y.-T., & Henderson, G. M. (2017). Barium stable isotopes in the global ocean: Tracer of Ba inputs and utilization. Earth and Planetary Science Letters, 473, 269-278. Hudson, R. J., & Morel, F. M. (1990). lron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions. Limnology and oceanography, 35(5), 1002-1020. Ingle, S., Culberson, C., Hawley, J., & Pytkowicz, R. (1973). The solubility of calcite in seawater at atmospheric pressure and 35% permil; salinity. Marine Chemistry, 1(4), 295-307. Jeandel, C., Dupre, B., Lebaron, G., Monnin, C., & Minster, J.-F. (1996). Longitudinal distributions of dissolved barium, silica and alkalinity in the western and southern Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 43(1), 1-31. Jeandel, C., Tachikawa, K., Bory, A., & Dehairs, F. (2000). Biogenic barium in suspended and trapped material as a tracer of export production in the tropical NE Atlantic (EUMELI sites). Marine Chemistry, 71(1-2), 125-142. John, S. G., Geis, R. W., Saito, M. A., & Boyle, E. A. (2007). Zinc isotope fractionation during high‐affinity and low‐affinity zinc transport by the marine diatom Thalassiosira oceanica. Limnology and oceanography, 52(6), 2710-2714. Köbberich, M., & Vance, D. (2019). Zn isotope fractionation during uptake into marine phytoplankton: implications for oceanic zinc isotopes. Chemical Geology, 523, 154-161. Lacombe, M., Garçon, V., Comtat, M., Oriol, L., Sudre, J., Thouron, D., Le Bris, N., & Provost, C. (2007). Silicate determination in sea water: Toward a reagentless electrochemical method. Marine Chemistry, 106(3-4), 489-497. Langer, G., Gussone, N., Nehrke, G., Riebesell, U., Eisenhauer, A., & Thoms, S. (2007). Calcium isotope fractionation during coccolith formation in Emiliania huxleyi: Independence of growth and calcification rate. Geochemistry, Geophysics, Geosystems, 8(5). Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C., & Macko, S. A. (1995). Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2) aq: Theoretical considerations and experimental results. Geochimica et Cosmochimica Acta, 59(6), 1131-1138. Lea, D. W., Shen, G. T., & Boyle, E. A. (1989). Coralline barium records temporal variability in equatorial Pacific upwelling. Nature, 340(6232), 373-376. Lee, J. G., & Morel, F. M. (1995). Replacement of zinc by cadmium in marine phytoplankton. Marine Ecology Progress Series, 127, 305-309. Li, F., Fan, J., Hu, L., Beardall, J., & Xu, J. (2019). Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization. ICES Journal of Marine Science, 76(6), 1850-1859. Martin, J. H., Knauer, G. A., Karl, D. M., & Broenkow, W. W. (1987). VERTEX: carbon cycling in the northeast Pacific. Deep Sea Research Part A. Oceanographic Research Papers, 34(2), 267-285. Martinez-Ruiz, F., Paytan, A., Gonzalez-Muñoz, M., Jroundi, F., Abad, M. d. M., Lam, P. J., Bishop, J., Horner, T. J., Morton, P. L., & Kastner, M. (2019). Barite formation in the ocean: Origin of amorphous and crystalline precipitates. Chemical Geology, 511, 441-451. Matecha, R., Capo, R., Stewart, B., Thompson, R., & Hakala, J. (2021). A single column separation method for barium isotope analysis of geologic and hydrologic materials with complex matrices. Geochemical Transactions, 22, 1-9. Michaelis, L., & Menten, M. L. (1913). Die kinetik der invertinwirkung. Biochem. z, 49(333-369), 352. Mohan, J. A., Miller, N. R., Herzka, S. Z., Sosa-Nishizaki, O., Kohin, S., Dewar, H., Kinney, M., Snodgrass, O., & Wells, R. D. (2018). Elements of time and place: manganese and barium in shark vertebrae reflect age and upwelling histories. Proceedings of the Royal Society B, 285(1890), 20181760. Monnin, C., Jeandel, C., Cattaldo, T., & Dehairs, F. (1999). The marine barite saturation state of the world's oceans. Marine Chemistry, 65(3-4), 253-261. Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, L., & Pilcher, D. (2016). Global ocean particulate organic carbon flux merged with satellite parameters. Earth System Science Data, 8(2), 531-541. Muggli, D. L., & Harrison, P. J. (1996). EDTA suppresses the growth of oceanic phytoplankton from the Northeast Subarctic Pacific. Journal of experimental marine biology and ecology, 205(1-2), 221-227. Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. Nürnberg, C. C., Bohrmann, G., Schlüter, M., & Frank, M. (1997). Barium accumulation in the Atlantic sector of the Southern Ocean: Results from 190,000‐year records. Paleoceanography, 12(4), 594-603. Pai, S.-C., Su, Y.-T., Lu, M.-C., Chou, Y., & Ho, T.-Y. (2021). Determination of nitrate in natural waters by vanadium reduction and the griess assay: reassessment and optimization. ACS ES&T Water, 1(6), 1524-1532. Pai, S.-C., Yang, C.-C., & Riley, J. (1990). Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Analytica Chimica Acta, 229, 115-120. Payne, C. D., & Price, N. M. (1999). Effects of cadmium toxicity on growth and elemental composition of marine phytoplankton. Journal of phycology, 35(2), 293-302. Paytan, A., & Kastner, M. (1996). Benthic Ba fluxes in the central Equatorial Pacific, implications for the oceanic Ba cycle. Earth and Planetary Science Letters, 142(3-4), 439-450. Price, N., & Morel, F. M. (1991). Colimitation of phytoplankton growth by nickel and nitrogen. Limnology and oceanography, 36(6), 1071-1077. Price, N. M., Harrison, G. I., Hering, J. G., Hudson, R. J., Nirel, P. M., Palenik, B., & Morel, F. M. (1989). Preparation and chemistry of the artificial algal culture medium Aquil. Biological oceanography, 6(5-6), 443-461. Raven, J., & Waite, A. (2004). The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New phytologist, 162(1), 45-61. Samanta, M., Ellwood, M. J., & Strzepek, R. F. (2018). Zinc isotope fractionation by Emiliania huxleyi cultured across a range of free zinc ion concentrations. Limnology and oceanography, 63(2), 660-671. Schouten, S., Ossebaar, J., Schreiber, K., Kienhuis, M., Langer, G., Benthien, A., & Bijma, J. (2006). The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica. Biogeosciences, 3(1), 113-119. Shaked, Y., Buck, K. N., Mellett, T., & Maldonado, M. T. (2020). Insights into the bioavailability of oceanic dissolved Fe from phytoplankton uptake kinetics. The ISME Journal, 14(5), 1182-1193. Sternberg, E., Tang, D., Ho, T.-Y., Jeandel, C., & Morel, F. M. (2005). Barium uptake and adsorption in diatoms. Geochimica et Cosmochimica Acta, 69(11), 2745-2752. Stevenson, E. I., Hermoso, M., Rickaby, R. E., Tyler, J. J., Minoletti, F., Parkinson, I. J., Mokadem, F., & Burton, K. W. (2014). Controls on stable strontium isotope fractionation in coccolithophores with implications for the marine Sr cycle. Geochimica et Cosmochimica Acta, 128, 225-235. Stroobants, N., Dehairs, F., Goeyens, L., Vanderheijden, N., & Van Grieken, R. (1991). Barite formation in the Southern Ocean water column. Marine Chemistry, 35(1-4), 411-421. Sunda, W. G., & Huntsman, S. A. (1995). Regulation of copper concentration in the oceanic nutricline by phytoplankton uptake and regeneration cycles. Limnology and oceanography, 40(1), 132-137. Tang, D., & Morel, F. M. (2006). Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Marine Chemistry, 98(1), 18-30. Thomas, H., Shadwick, E., Dehairs, F., Lansard, B., Mucci, A., Navez, J., Gratton, Y., Prowe, F., Chierici, M., & Fransson, A. (2011). Barium and carbon fluxes in the Canadian Arctic Archipelago. Journal of Geophysical Research: Oceans, 116(C9). Torres-Crespo, N., Martínez-Ruiz, F., González-Muñoz, M., Bedmar, E., De Lange, G., & Jroundi, F. (2015). Role of bacteria in marine barite precipitation: a case study using Mediterranean seawater. Science of the Total Environment, 512, 562-571. Ushizaka, S., Sugie, K., Yamada, M., Kasahara, M., & Kuma, K. (2008). Significance of Mn and Fe for growth of coastal marine diatom Thalassiosira weissflogii. Fisheries science, 74, 1137-1145. Van Horsten, N. R., Planquette, H., Sarthou, G., Ryan-Keogh, T. J., Lemaitre, N., Mtshali, T. N., Roychoudhury, A., & Bucciarelli, E. (2022). Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise). Biogeosciences, 19(13), 3209-3224. Von Allmen, K., Böttcher, M. E., Samankassou, E., & Nägler, T. F. (2010). Barium isotope fractionation in the global barium cycle: First evidence from barium minerals and precipitation experiments. Chemical Geology, 277(1-2), 70-77. Von Dassow, P., Chepurnov, V. A., & Armbrust, E. V. (2006). Relationships Between Growth Rate, Cell Size, and Induction of Spermatogenesis in the Centric Diatom Thalassiosira Weissflogii (bacillariophyta) 1. Journal of phycology, 42(4), 887-899. Wada, E., & Hattori, A. (1978). Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiology Journal, 1(1), 85-101. Walter, B., Peters, J., Van Beusekom, J., & St. John, M. (2015). Interactive effects of temperature and light during deep convection: a case study on growth and condition of the diatom Thalassiosira weissflogii. ICES Journal of Marine Science, 72(6), 2061-2071. Webb, P. (2021). Introduction to oceanography. Roger Williams University. Xu, Y., & Morel, F. M. (2013). Cadmium in marine phytoplankton. Cadmium: from toxicity to essentiality, 509-528. Yao, W., Griffith, E., & Paytan, A. (2020). Pelagic barite: tracer of ocean productivity and a recorder of isotopic compositions of seawater S, O, Sr, Ca and Ba. Cambridge University Press. Zhang, R., Kong, Z., Chen, S., Ran, Z., Ye, M., Xu, J., Zhou, C., Liao, K., Cao, J., & Yan, X. (2017). The comparative study for physiological and biochemical mechanisms of Thalassiosira pseudonana and Chaetoceros calcitrans in response to different light intensities. Algal research, 27, 89-98. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93255 | - |
dc.description.abstract | 元素鋇(Ba)和其穩定同位素常作為重建「海洋生產力」的示蹤劑,但元素鋇與海洋浮游植物攝取的關係不明確,其應用常受到限制。本論文通過一系列浮游植物培養實驗,探討生物鋇攝取,在遠洋重晶石(硫酸鋇,BaSO4)形成過程中扮演的角色,及其對海洋鋇和碳循環的影響。研究結果包括:(1)取得各種浮游植物(包括矽藻Thalassiosira weissflogii、Thalassiosira pseudonana和Chaetoceros muelleri,以及鈣板藻Emiliania huxleyi和Gephyrocapsa oceanica)的元素鋇磷比(Ba/P)。(2)首次探討矽藻Thalassiosira weissflogii的碳鋇比(C/Ba),發現顯著高於海洋顆粒中觀察到的比率(至少1000倍)。由此顯著高的比率推論,為維持海洋中的顆粒態鋇通量,需要有額外的鋇來源。(3)首次分析矽藻Thalassiosira weissflogii和鈣板藻Emiliania huxleyi兩種浮游植物的鋇同位素組成。結果表明,浮游植物從培養海水中,優先攝取較輕的鋇同位素。當培養液中的鋇濃度從90 nM調升到200 nM時,Thalassiosira weissflogii的同位素分化因子(isotope fractionation factors, Δ138/134Babio-sw)從−0.47‰變化到−0.20‰,然而此變化與生長速率無關。從培養實驗中得知,與表層海水相近的鋇濃度範圍內,該藻中的同位素分化因子(−0.33 ~ −0.47‰),與遠洋重晶石之觀測值近似(−0.4 ~ −0.5‰),進而推測大多數浮游植物所攝取的鋇,在完全轉化成遠洋重晶石的過程中,沒有產生進一步的同位素分化。本研究為海洋浮游植物鋇磷比、及鋇同位素分化因子提供了新見解,增強了我們對海洋環境中鋇循環和碳循環的理解。 | zh_TW |
dc.description.abstract | Barium (Ba) and it stable isotopes have been commonly used as tracers for reconstructing marine productivity, but such applications are often limited by unrevealed relationships between Ba and marine phytoplankton uptake. This thesis sets up a series of phytoplankton culture experiments to explore the biological Ba uptake that contributes to pelagic barite (BaSO4) formation, and its impact on the marine Ba and C cycles. The results reveal Ba cell quotas (Ba/P) in various phytoplankton, including diatoms (Thalassiosira weissflogii, Thalassiosira psueudonana, and Chaetoceros muelleri) and coccolithophores (Emiliania huxleyi and Gephyrocapsa oceanica), ranging from 5 to 30 𝜇mol/mol. Culture experiments of Thalassiosira weissflogii show a positive relationship between Ba uptake and Ba concentration ([Ba]) in the culture medium. However, the slopes of this relationship may result from variations in phytoplankton growth rates. This study also investigates the C/Ba ratios of cultured Thalassiosira weissflogii for the first time, and these ratios are significantly higher (> 1000-fold) than the ratios observed in field marine particles, suggesting that additional Ba supply is necessary to sustain particulate Ba flux along the export production. The Ba isotope compositions of phytoplankton are reported for the first time for Thalassiosira weissflogii and Emiliania huxleyi. The results indicate a preferential uptake of lighter Ba isotopes from ambient seawater, with isotope fractionation factors (138/134Babio-sw) varying from −0.47‰ to −0.20‰ as the culture medium [Ba] changes from 90 nM to 200 nM, independently of growth rates. The consistent isotope fractionation factors (−0.33 ~ −0.47‰) between the culture experiments and pelagic barite within the range of surface seawater [Ba] (−0.4 ~ −0.5‰) imply that phytoplankton Ba uptake is largely transformed into pelagic barite without further isotope fractionation. This study provides better constraints on marine phytoplankton Ba cell quotas and their isotope fractionation factors, enhancing our understanding of Ba and C cycles in marine environments. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:31:51Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-23T16:31:51Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 摘要 iii Abstract iv Table of contents vi Table references viii Figure references x Chapter 1: Introduction 1 1.1 Marine barium cycle and its connection with biogeochemical processes 1 1.2 The link between Ba and primary productivity/export production 5 1.3 Seawater Ba stable isotopes and the imbalanced oceanic isotopic budget 10 1.4 Previous studies of Ba uptake in marine phytoplankton 16 Chapter 2: Methods 20 2.1 Phytoplankton culturing experiments 20 2.1.1 Phytoplankton 20 2.1.2 Culture seawater medium 22 2.1.3 Culture nutrient medium 24 2.2 Validation of culture medium stock solutions 30 2.3 Cell counting, sample harvest, and digestion 31 2.3.1 Cell counting 31 2.3.2 Sample harvest 34 2.3.3 Digestion 39 2.4 Cell quota trace element analysis 40 2.5 Cell quota particulate organic carbon and nitrogen analysis 42 2.6 Ba purification: ion exchange chromatography 44 2.6.1 Ba ion exchange column calibration 44 2.6.2 Sample treatment for Ba ion exchange column 46 2.7 Barium isotope analysis 47 Chapter 3: Results 49 3.1 Washing method comparison (Experiment A) 49 3.2 Preliminary test: culture of Chaetoceros muelleri under two different various [Ba] conditions (Experiment B) 51 3.3 Culture of coccolithophores (Experiment C) 54 3.4 Culture of Thalassiosira species (Experiment D and E) 56 3.4.1 Culture experiments in 100 mL volume (Experiment D) 56 3.4.2 Culture experiments in 1 L volume (Experiment E) 58 3.5 Culture of Thalassiosira weissflogii for Ba isotopic composition 65 Chapter 4: Discussion 70 4.1 Ba cell quota among different marine phytoplankton 70 4.2 C/Ba of Thalassiosira weissflogii and coccolithophores 78 4.3 Ba isotopic composition of marine phytoplankton 85 Chapter 5: Conclusion 93 Reference 95 | - |
dc.language.iso | en | - |
dc.title | 海洋浮游植物的元素鋇攝取和同位素分化 | zh_TW |
dc.title | Barium uptake and isotope fractionation in some marine phytoplankton | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 何東垣;何珮綺;廖文軒 | zh_TW |
dc.contributor.oralexamcommittee | Tung-Yuan Ho;Pei-Chi Ho;Wen-Hsuan Liao | en |
dc.subject.keyword | 鋇,同位素分化,生產力指標,重晶石,浮游植物培養, | zh_TW |
dc.subject.keyword | barium,isotopic fractionation,productivity proxy,barite,phytoplankton culture, | en |
dc.relation.page | 105 | - |
dc.identifier.doi | 10.6342/NTU202401681 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-07-15 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2029-07-05 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2029-07-05 | 4.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。