請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93232完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹承礎 | zh_TW |
| dc.contributor.advisor | Seng-Cho Chou | en |
| dc.contributor.author | 廖佳莉 | zh_TW |
| dc.contributor.author | Jia-Li Liao | en |
| dc.date.accessioned | 2024-07-23T16:25:04Z | - |
| dc.date.available | 2024-07-24 | - |
| dc.date.copyright | 2024-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-16 | - |
| dc.identifier.citation | [1] P. Braendgaard and J. Torstensson. (2018, May) ERC-1056: Ethereum lightweight identity. Created: 2018-05-03. [Online]. Available: https://eips.ethereum.org/EIPS/eip-1056
[2] Decentralized Identity Foundation. ethr DID Resolver. [Online]. Available: https://github.com/decentralized-identity/ethr-did-resolver [3] IBM Security. Cost of a data breach report 2023. [Online]. Available: https://www.ibm.com/reports/data-breach [4] European blockchain services infrastructure (ebsi) and the essif. [Online]. Available:https://decentralized-id.com/government/europe/eu/ebsi-essif/ [5] O. G. Products. SGID: A privacy-preserving national digital identity system. [Online]. Available:https://docs.id.gov.sg/learn-the-basics/protocols/sgid/white-paper [6] 數位發展部. (2024, 5) 光復自己——保護隱私的分散式身分. [Online]. Available: https://moda.gov.tw/press/multimedia/blog/10279 [7] S. Lakshminarayanan, P. N. Kumar, and N. M. Dhanya, “Implementation of blockchain-based blood donation framework,” in Computational Intelligence in Data Science, ser. IFIP Advances in Information and Communication Technology, A. Chandrabose, U. Furbach, A. Ghosh, and M. A. Kumar, Eds. Cham: Springer, 2020, vol. 578. [Online]. Available: https://doi.org/10.1007/978-3-030-63467-4_22 [8] S. Sadri, A. Shahzad, and K. Zhang, “Blockchain traceability in healthcare: Blood donation supply chain,” in 2021 23rd International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea (South), 2021, pp. 119–126. [9] A. De Salve, A. Lisi, P. Mori, and L. Ricci, “Selective Disclosure in Self-Sovereign Identity based on Hashed Values,” in 2022 IEEE Symposium on Computers and Communications (ISCC), 2022. [10] R. S. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE Communications Magazine, vol. 32, no. 9, pp. 40–48, Sept. 1994. [11] R. S. Sandhu, “Role-based access control,” in Advances in Computers, M. V. Zelkowitz, Ed. Elsevier, 1998, vol. 46, pp. 237–286. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0065245808602065 [12] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas, “Attribute-based access control,” Computer, vol. 48, no. 2, pp. 85–88, 2015. [13] D. Di Francesco Maesa, P. Mori, and L. Ricci, “Blockchain based access control,” in Distributed Applications and Interoperable Systems: 17th IFIP WG 6.1 International Conference, DAIS 2017, Held as Part of the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19–22, 2017, Proceedings. Springer International Publishing, 2017, pp. 206–220. [14] M. Steichen, B. Fiz, R. Norvill, W. Shbair, and R. State, “Blockchain-based, decentralized access control for ipfs,” in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2018, pp. 1499–1506. [15] R. Nardone, Y. Kortesniemi, D. Lagutin, T. Elo, and N. Fotiou, “Improving the privacy of iot with decentralised identifiers (dids),” Journal of Computer Networks and Communications, vol. 2019, p. 8706760, 03 2019. [Online]. Available: https://doi.org/10.1155/2019/8706760 [16] B. Kim, W. Shin, D.-Y. Hwang, and K.-H. Kim, “Attribute-based access control (abac) with decentralized identifier in the blockchain-based energy transaction platform,” in 2021 International Conference on Information Networking (ICOIN), 2021, pp. 845–848. [17] J. P. Cruz, Y. Kaji, and N. Yanai, “RBAC-SC: Role-Based Access Control Using Smart Contract,” IEEE Access, vol. 6, pp. 12240–12251, 2018. [18] M. Al-Bassam, “SCPKI: A Smart Contract-based PKI and Identity System,” in Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts (BCC ’17), 2017, p. 35–40. [19] S. A. Gebreab, H. R. Hasan, K. Salah, and R. Jayaraman, “NFT-Based Traceability and Ownership Management of Medical Devices,” IEEE Access, vol. 10, pp. 126394–126411, 2022. [20] S. Reddy and S. K. Dharmender, Framework for privacy-preserving credential issuance and verification system using soulbound token. EDP Sciences, 2023. [21] R. Mukta, J. Martens, H.-y. Paik, Q. Lu, and S. S. Kanhere, “Blockchain-Based Verifiable Credential Sharing with Selective Disclosure,” in 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2020, pp. 959–966. [22] R. A. Ziar et al., “Privacy preservation for on-chain data in the permissionless blockchain using symmetric key encryption and smart contract,” Mehran University Research Journal Of Engineering & Technology, vol. 40, no. 2, pp. 305–313, 2021. [23] C. Ge, Z. Liu, W. Susilo, L. Fang, and H. Wang, “Attribute-Based Encryption With Reliable Outsourced Decryption in Cloud Computing Using Smart Contract,” IEEE Transactions on Dependable and Secure Computing, vol. 21, no. 2, pp. 937–948, March-April 2024. [24] M. Sporny, D. Longley, M. Sabadello, D. Reed, O. Steele, and C. Allen, “Decentralized identifiers (DIDs) v1.0 (W3C proposed recommendation 19 July 2022),” World Wide Web Consortium, Tech. Rep., 2022. [Online]. Available: https://www.w3.org/TR/did-core/ [25] uPort. Ethr-DID Library. [Online]. Available: https://github.com/uport-project/ethr-did [26] M. Sporny, D. Longley, and D. Chadwick, “Verifiable credentials data model v1.1 (W3C proposed recommendation 03 March 2022),” World Wide Web Consortium, Tech. Rep., 2022. [Online]. Available: https://www.w3.org/TR/2022/REC-vc-data-model-20220303/ [27] O. Steele and M. Prorock. (2022, January) Merkle disclosure proof 2021. Unofficial Draft. [Online]. Available:https://w3c-ccg.github.io/Merkle-Disclosure-2021/ [28] J. Benet, “IPFS-content addressed versioned P2P file system,” 2014. [Online]. Available: https://arxiv.org/abs/1407.3561 [29] C. Dannen, Introducing Ethereum and Solidity. Berkeley: Apress, 2017. [30] W. Entriken, D. Shirley, J. Evans, and N. Sachs. (2018) ERC-721: Non-Fungible Token Standard. [Online]. Available: https://eips.ethereum.org/EIPS/eip-721 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93232 | - |
| dc.description.abstract | 傳統的集中式和聯邦身分管理系統是目前常見的管理方式。然而這些系統可能在資料安全、隱私保護和單點故障方面存在挑戰。本研究提出一個強化區塊鏈於資料存取控制、選擇性揭露與隱私保護之應用,以解決這些問題。
該系統利用區塊鏈技術的特性使資料使用情況可追蹤且不可篡改。通過採用去中心化身份(DIDs)和可驗證憑證(VCs),使用者可以保有對其資料的控制權,避免大型身分提供商對使用者數據的過度監管和濫用,並允許使用者選擇性披露資訊,降低了集中式身分管理中資料洩漏的風險。 系統採用了密鑰封裝機制(KEM)和IPFS去中心化存儲技術,在資料傳輸過程中保護使用者的隱私,確保只有經授權的實體才能解密和訪問資料。最後還整合了NFT技術,以實現產品的可追蹤性和可轉移性,使其適用於需要隱私和可追蹤性的供應鏈場景。 本研究結合了區塊鏈、去中心化身份和加密技術,實現了一個能夠確保資料可追蹤、防止資料洩漏並保護使用者隱私的系統。 | zh_TW |
| dc.description.abstract | Traditional centralized and federated identity management systems are commonly used currently; nonetheless, such systems present challenges regarding data security, privacy safeguards, and lone points of failure. This exploration proposes an enhanced application of blockchain for data access control, selective disclosure, and privacy protection to address these issues.
The system exploits the traits of blockchain engineering to assure information traceability and immutability. By embracing decentralized identities (DIDs) and verifiable credentials (VCs), users maintain control over their details, preventing excessive oversight and misapplication of user data by enormous identity suppliers. It additionally permits users to selectively disclose information, reducing the danger of detail leakage related to centralized identity management. The system employs key encapsulation mechanisms(KEM) and IPFS decentralized storage to shield user privacy during data transmission, confirming that only authorized organizations can decrypt and access the data. Lastly, the system incorporates NFT technology to facilitate product traceability and transferability, rendering it suitable for supply chain scenarios necessitating both privacy and traceability. This exploration combines blockchain, decentralized identities, and encryption technologies to create a system that confirms data traceability, averts data leakage, and safeguards user privacy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:25:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-23T16:25:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 ii
摘要 iii Abstract iv Contents vi List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Traditional Methods of Identity Management 2 1.3 Developments in Decentralized Identity 3 1.4 Existing Research on Decentralized Identity 5 1.5 Aims and Objectives 5 Chapter 2 Related Work 7 2.1 Access Control 7 2.2 Decentralized Identifier (DID) 9 2.3 Smart Contract 9 2.4 NFT 10 2.5 Encryption Methods 11 Chapter 3 Methodology 13 3.1 Decentralized Identity (DID) 13 3.1.1 Ethr DID 14 3.1.2 ERC-1056: Ethereum DID Registry 15 3.1.3 ethr DID Resolver 16 3.2 Verifiable Credential (VC) 17 3.2.1 Selective Disclosure 18 3.3 IPFS 21 3.3.1 Gateway Access Controls 21 3.4 Smart Contract 22 3.5 Non-Fungible Token (NFT) 23 3.6 Key Encapsulation Mechanism (KEM) 23 3.7 System Characteristics 24 Chapter 4 Experiment 25 4.1 System Background 25 4.2 Prerequisite 27 4.2.1 Testing Environment 27 4.2.2 Ethr-DID and DID Document 27 4.2.3 Public Key Integration 28 4.2.4 IPFS Access Control 28 4.3 Sequence Diagram 28 4.3.1 Information Provision and NFT Minting 28 4.3.2 Demand Confirmation and NFT Transfer 32 4.3.3 Data Request and Access 33 4.4 System Characteristics 35 4.4.1 Traceability and Transparency 35 4.4.2 Privacy Preserving 35 4.4.3 Selective Disclosure 36 4.4.4 Data Access Control 37 4.4.5 Transferability 37 Chapter 5 Experiment Results 38 5.1 Issue and Store VC 39 5.2 Mint NFT 39 5.3 Bind VC with Token ID 40 5.4 Data Request 41 5.5 Data Received 41 Chapter 6 Comparison 43 Chapter 7 Conclusion 45 References 46 | - |
| dc.language.iso | en | - |
| dc.subject | 區塊鏈 | zh_TW |
| dc.subject | 隱私保護 | zh_TW |
| dc.subject | 選擇性揭露 | zh_TW |
| dc.subject | 存取控制 | zh_TW |
| dc.subject | NFT | zh_TW |
| dc.subject | Access Control | en |
| dc.subject | Blockchain | en |
| dc.subject | Privacy Preservation | en |
| dc.subject | Selective Disclosure | en |
| dc.subject | NFT | en |
| dc.title | 強化區塊鏈於資料存取控制、選擇性揭露與隱私保護之應用 | zh_TW |
| dc.title | Enhancing Blockchain for Data Access Control, Selective Disclosure, and Privacy Preservation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建錦;杜志挺 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Chin Chen;Chih-Ting Du | en |
| dc.subject.keyword | 區塊鏈,隱私保護,選擇性揭露,存取控制,NFT, | zh_TW |
| dc.subject.keyword | Blockchain,Privacy Preservation,Selective Disclosure,Access Control,NFT, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202401841 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-17 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
