請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93227完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施上粟 | zh_TW |
| dc.contributor.advisor | Shang-Shu Shih | en |
| dc.contributor.author | 洪榮憲 | zh_TW |
| dc.contributor.author | JUNG-HSIEN HUNG | en |
| dc.date.accessioned | 2024-07-23T16:23:36Z | - |
| dc.date.available | 2024-07-24 | - |
| dc.date.copyright | 2024-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-15 | - |
| dc.identifier.citation | Ansar, A., Flyvbjerg, B., Budzier, A., & Lunn, D. (2014). Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy, 69, 43-56. https://doi.org/10.1016/j.enpol.2013.10.069
Bachant, P., & Wosnik, M. (2015). Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency. Renewable Energy, 74, 318-325. https://doi.org/10.1016/j.renene.2014.07.049 Behrouzi, F., Nakisa, M., Maimun, A., & Ahmed, Y. M. (2016). Global renewable energy and its potential in Malaysia: A review of Hydrokinetic turbine technology. Renewable and Sustainable Energy Reviews, 62, 1270-1281. https://doi.org/10.1016/j.rser.2016.05.020 Benchikh Le Hocine, A. E., Jay Lacey, R. W., & Poncet, S. (2019). Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renewable Energy, 143, 1890-1901. https://doi.org/10.1016/j.renene.2019.06.010 Berga, L. (2016). The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review. Engineering, 2(3), 313-318. https://doi.org/10.1016/j.Eng.2016.03.004 Consul, C. A., Willden, R. H., & McIntosh, S. C. (2013). Blockage effects on the hydrodynamic performance of a marine cross-flow turbine. Philos Trans A Math Phys Eng Sci, 371(1985), 20120299. https://doi.org/10.1098/rsta.2012.0299 Fraenkel, P. L. (2007). Marine current turbines: Pioneering the development of marine kinetic energy converters. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2), 159-169. https://doi.org/10.1243/09576509jpe307 Golecha, K., Eldho, T. I., & Prabhu, S. V. (2011). Influence of the deflector plate on the performance of modified Savonius water turbine. Applied Energy, 88(9), 3207-3217. https://doi.org/10.1016/j.apenergy.2011.03.025 Grodzicki, T., & Jankiewicz, M. (2022). The impact of renewable energy and urbanization on CO2 emissions in Europe – Spatio-temporal approach. Environmental Development, 44. https://doi.org/10.1016/j.envdev.2022.100755 Güney, M. S., & Kaygusuz, K. (2010). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 14(9), 2996-3004. https://doi.org/10.1016/j.rser.2010.06.016 Gyamfi, B. A., Bein, M. A., & Bekun, F. V. (2020). Investigating the nexus between hydroelectricity energy, renewable energy, nonrenewable energy consumption on output: evidence from E7 countries. Environmental Science and Pollution Research 27(20), 25327-25339. https://doi.org/10.1007/s11356-020-08909-8 Harlow, F. H., & Nakayama, P. I. (1967). Turbulence Transport Equations. The Physics of Fluids, 10(11), 2323-2332. https://doi.org/10.1063/1.1762039 Hirt, C. W., & Nichols, B. D. (1981). Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 39(1), 201-225. https://doi.org/Doi 10.1016/0021-9991(81)90145-5 Ibrahim, W. I., Mohamed, M. R., Ismail, R. M. T. R., Leung, P. K., Xing, W. W., & Shah, A. A. (2021). Hydrokinetic energy harnessing technologies: A review. Energy Reports, 7, 2021-2042. https://doi.org/10.1016/j.egyr.2021.04.003 IEA. (2023a). Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser (2023b). World Energy Outlook 2023. https://www.iea.org/reports/world-energy-outlook-2023 Jacobs, E. N., Ward, K. E., & Pinkerton, R. M. (1933). The characteristics of 78 related airfoil sections from tests in the variable-density wind tunne. https://ntrs.nasa.gov/api/citations/19930091108/downloads/19930091108.pdf Khan, M. J., Bhuyan, G., Iqbal, M. T., & Quaicoe, J. E. (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, 86(10), 1823-1835. https://doi.org/10.1016/j.apenergy.2009.02.017 Khan, M. J., Iqbal, M. T., & Quaicoe, J. E. (2008). River current energy conversion systems: Progress, prospects and challenges. Renewable and Sustainable Energy Reviews, 12(8), 2177-2193. https://doi.org/10.1016/j.rser.2007.04.016 Kirke, B. K., & Lazauskas, L. (2011). Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. Renewable Energy, 36(3), 893-897. https://doi.org/10.1016/j.renene.2010.08.027 Koko, S. P., Kusakana, K., & Vermaak, H. J. (2015). Micro-hydrokinetic river system modelling and analysis as compared to wind system for remote rural electrification. Electric Power Systems Research, 126, 38-44. https://doi.org/10.1016/j.epsr.2015.04.018 Kumar, D., & Sarkar, S. (2016). A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems. Renewable and Sustainable Energy Reviews, 58, 796-813. https://doi.org/10.1016/j.rser.2015.12.247 Kusakana, K., & Vermaak, H. J. (2013). Hydrokinetic power generation for rural electricity supply: Case of South Africa. Renewable Energy, 55, 467-473. https://doi.org/10.1016/j.renene.2012.12.051 Lago, L. I., Ponta, F. L., & Chen, L. (2010). Advances and trends in hydrokinetic turbine systems. Energy for Sustainable Development, 14(4), 287-296. https://doi.org/10.1016/j.esd.2010.09.004 Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., & Wisser, D. (2011). High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management. Frontiers in Ecology and the Environment, 9(9), 494-502. https://doi.org/10.1890/100125 Li, Q. a., Maeda, T., Kamada, Y., Shimizu, K., Ogasawara, T., Nakai, A., & Kasuya, T. (2017). Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method. Energy, 121, 1-9. https://doi.org/10.1016/j.energy.2016.12.112 Lima, M. A., Mendes, L. F. R., Mothé, G. A., Linhares, F. G., de Castro, M. P. P., da Silva, M. G., & Sthel, M. S. (2020). Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environmental Development, 33. https://doi.org/10.1016/j.envdev.2020.100504 Mayeda, A. M., & Boyd, A. D. (2020). Factors influencing public perceptions of hydropower projects: A systematic literature review. Renewable and Sustainable Energy Reviews, 121. https://doi.org/10.1016/j.rser.2020.109713 Moran, E. F., Lopez, M. C., Moore, N., Muller, N., & Hyndman, D. W. (2018). Sustainable hydropower in the 21st century. Proceedings of the National Academy of Sciences, 115(47), 11891-11898. https://doi.org/10.1073/pnas.1809426115 Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., & Tucciarelli, T. (2019). Performance study of a Helical Savonius hydrokinetic turbine with a new deflector system design. Energy Conversion and Management, 194, 55-74. https://doi.org/https://doi.org/10.1016/j.enconman.2019.04.080 Niebuhr, C. M., van Dijk, M., Neary, V. S., & Bhagwan, J. N. (2019). A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential. Renewable and Sustainable Energy Reviews, 113. https://doi.org/10.1016/j.rser.2019.06.047 Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and Flow Regulation of the World's Large River Systems. Science, 308(5720), 405-408. https://doi.org/doi:10.1126/science.1107887 O'Connor, J. E., Duda, J. J., & Grant, G. E. (2015). 1000 dams down and counting. Science, 348(6234), 496-497. https://doi.org/doi:10.1126/science.aaa9204 Patel, V., Eldho, T. I., & Prabhu, S. V. (2019). Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower. Renewable Energy, 135, 1144-1156. https://doi.org/10.1016/j.renene.2018.12.074 Reddy, K. B., Bhosale, A. C., & Saini, R. P. (2022). Performance parameters of lift-based vertical axis hydrokinetic turbines - A review. Ocean Engineering, 266, 113089. https://doi.org/10.1016/j.oceaneng.2022.113089 Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 180, 838-857. https://doi.org/10.1016/j.energy.2019.05.053 Saini, G., & Saini, R. P. (2019). A review on technology, configurations, and performance of cross‐flow hydrokinetic turbines. International Journal of Energy Research, 43(2019), 6639-6679. https://doi.org/10.1002/er.4625 Salleh, M. B., Kamaruddin, N. M., & Mohamed-Kassim, Z. (2020). The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine. Energy Conversion and Management, 226, 113584. https://doi.org/https://doi.org/10.1016/j.enconman.2020.113584 Santa Fe, N. (2022). FLOW-3D® Version 2022R2 Users Manual. FLOW-3D [Computer software]. In Flow Science, Inc. https://www.flow3d.com Sengupta, A. R., Biswas, A., & Gupta, R. (2016). Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renewable Energy, 93, 536-547. https://doi.org/10.1016/j.renene.2016.03.029 Singh, M. A., Biswas, A., & Misra, R. D. (2015). Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor. Renewable Energy, 76, 381-387. https://doi.org/10.1016/j.renene.2014.11.027 Smagorinsky, J. (1963). General Circulation Experiments with the Primitive Equations. Monthly Weather Review, 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:Gcewtp>2.3.Co;2 UNEP. (2019). Emissions Gap Report 2019. https://wedocs.unep.org/20.500.11822/30797. UNFCCC. (2020). Annual Report 2020. https://unfccc.int/about-us/annual-report/annual-report-2020 WEC. (2004). COMPARISON OF ENERGY SYSTEMS USING LIFE CYCLE ASSESSMENT. https://www.worldenergy.org/publications/entry/comparison-of-energy-systems-using-life-cycle-assessment Wilcox, D. C. (2008). Formulation of the k-w Turbulence Model Revisited. AIAA Journal, 46(11), 2823-2838. https://doi.org/10.2514/1.36541 Yadav, P. K., Kumar, A., & Jaiswal, S. (2023). A critical review of technologies for harnessing the power from flowing water using a hydrokinetic turbine to fulfill the energy need. Energy Reports, 9, 2102-2117. https://doi.org/10.1016/j.egyr.2023.01.033 Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. https://doi.org/10.1007/BF01061452 Yosry, A. G., Álvarez, E. Á., Valdés, R. E., Pandal, A., & Marigorta, E. B. (2023). Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations. Renewable Energy, 203, 788-801. https://doi.org/10.1016/j.renene.2022.12.114 Yuce, M. I., & Muratoglu, A. (2015). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43, 72-82. https://doi.org/10.1016/j.rser.2014.10.037 Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2014). A global boom in hydropower dam construction. Aquatic Sciences, 77(1), 161-170. https://doi.org/10.1007/s00027-014-0377-0 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93227 | - |
| dc.description.abstract | 氣候變遷對環境影響日益加劇,能源轉型與綠色能源發展成為國際趨勢。水力發電因高能源轉換效率與穩定發電量等因素,自90年代以來持續作為最大的可再生能源。近年來,由於生態與社會問題,傳統大壩式水力發電開發減緩,取而代之的是具有環境衝擊小與成本低廉等優勢的水動力能量轉換系統。然而,水動力能量轉換系統仍處於早期發展階段,因此在渦輪機設計和導流裝置等領域仍存在諸多研究缺口。
本研究旨在結合水槽試驗及數值模式模擬,探討導流板設計的關鍵參數,以提升垂直軸水動力式渦輪機發電效率。研究選擇NACA-0015翼型,設計一架固性為0.398,縱橫比為1.0之升力式垂直軸水動力渦輪機。實體成品經由3D列印技術製成,並透過水槽試驗量測其轉速與扭矩,評估原始渦輪機的功率係數。而後將水槽實驗量測之流量與水位分別作為FLOW-3D上下游邊界條件進行模擬,以評估不同網格解析度之準確性,並進行FLOW-3D之參數率定、模式驗證。決定網格解析度後,針對導流板長度、角度與兩板之間距離設計18組不同配置方案,並透過FLOW-3D進行模擬,以觀察渦輪機三維細部速度場與壓力場變化,並分析導流板對於流場之影響。最後,綜合分析與討論18組方案的角速度、扭矩、功率和功率係數,找出導流板配置的關鍵參數,並評估其對渦輪機性能提升的效果。 本研究流場分析結果表明,除渦輪機本身之阻塞作用外,導流板的束縮亦會增加水位差異,產生更大的上下游壓力差。此外,導流板引導接近板面的水流流向,提升其流速,使渦輪機葉片內外側產生更大的流速差,進而增加升力與提高渦輪機效率。渦輪機效率分析結果顯示,渦輪機原始功率係數為0.057,加裝導流板後,隨著導流板越靠近渦輪機,功率係數從0.1提高到0.335左右,提升幅度約為66%到450%。此外,渦輪機功率隨角度之變化呈現明顯的三葉瓣狀,且隨導流板越靠近渦輪,其功率峰值逐漸從60°/180°/300°轉移到90°/210°/330°左右。表明導流板設置不僅能提高速度差,增加渦輪機功率係數,亦會改變流場分布,導致最佳葉片角度位置組合發生變化。最終結果顯示,兩板之間距離對渦輪機周圍流場的影響顯著大於導流板長度和導流板角度。因此它對渦輪機效率的提升也遠高於其他兩個參數。 | zh_TW |
| dc.description.abstract | The impact of climate change on the environment is intensifying, leading to an international trend towards energy transition and the development of green energy. Hydropower has remained the largest renewable energy source since the 1990s due to its high energy efficiency. In recent years, the development of traditional dam-based hydropower has slowed down due to ecological and social issues. Instead, hydrokinetic energy conversion systems, which offer advantages such as minimal environmental impact and low cost, have gained attention. Nonetheless, hydrokinetic energy conversion systems are still in the early stages of development, leaving many research gaps in areas such as turbine design and deflector devices.
This study aims to enhance the power efficiency of vertical-axis hydrokinetic turbines by investigating crucial parameters in deflector device design through a combination of flume experiments and CFD model simulations. The research focuses on a lift-based vertical-axis hydrokinetic turbine designed with a NACA-0015 airfoil, a solidity of 0.398, and an aspect ratio of 1.0. The flow conditions and relevant parameters investigated from the flume experiment were utilized as boundary conditions and validation processes for FLOW-3D simulations to evaluate the accuracy of different mesh resolutions and validate the FLOW-3D model. After determining the mesh resolution, 18 different configurations of deflector devices were designed, varying in length, angle, and width between the plates. These configurations were simulated using the verified FLOW-3D to observe the changes in the turbine's three-dimensional detailed velocity and pressure fields and analyze the impact of the deflector devices on the flow field. Finally, a comprehensive analysis and discussion of the angular velocity, torque, power, and power coefficient of the 18 configurations were conducted to identify the critical parameters of the deflector device design and evaluate their effects on improving turbine performance. The flow field analysis results indicate that, in addition to the turbine's blockage effect, the contraction caused by the deflector devices also increases the water elevation difference, leading to a larger pressure difference between upstream and downstream. Additionally, the deflector devices direct the flow close to their surfaces, increasing the flow velocity. This causes a greater velocity difference on both sides of the turbine blades, enhancing lift and thus improving turbine efficiency. The efficiency analysis of the turbine shows that the original power coefficient was 0.057. With the addition of deflector devices, the power coefficient increased from 0.1 to approximately 0.335 as the deflector devices were placed closer to the turbine, indicating an enhancement ranging from about 66% to 450%. Moreover, the variation in turbine power with blade angles exhibited a distinct three-lobed pattern, with the power peaks gradually shifting from 60°/180°/300° to approximately 90°/210°/330° as the deflector devices approached the turbine. This indicates that the deflector devices not only increase the velocity difference and power coefficient but also alter the flow field distribution, thereby changing the optimal blade angle positions. The final results indicate that the distance between the two plates significantly influences the flow field around the turbine compared to the length and angle of the deflector devices. Therefore, it also contributes significantly more to improving turbine efficiency than the other two parameters. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:23:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-23T16:23:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 摘要 iii ABSTRACT v 第一章 緒論 - 1 - 1.1 水力發電作為潔淨能源 - 1 - 1.2 水動力能量轉換系統 - 3 - 1.3 研究目的 - 4 - 第二章 研究方法 - 5 - 2.1 研究流程 - 5 - 2.2 基礎理論 - 6 - 2.2.1 水動力式渦輪機 - 6 - 2.2.2 設計與性能評估參數 - 10 - 2.3 水槽試驗 - 15 - 2.3.1 渦輪機設計 - 15 - 2.3.2 水槽試驗配置 - 17 - 2.3.3 量測儀器 - 19 - 2.3.4 現地案例 - 22 - 2.4 數值模擬 - 24 - 2.4.1 FLOW-3D概述 - 24 - 2.4.2 模式建置 - 30 - 第三章 水槽試驗結果與數值模式驗證 - 37 - 3.1 水槽試驗結果 - 37 - 3.2 數值模式結果與驗證 - 40 - 第四章 方案模擬與討論 - 44 - 4.1 導流板配置 - 44 - 4.2 流場分析與討論 - 46 - 4.3 渦輪機效率分析與討論 - 59 - 第五章 結論與建議 - 71 - 5.1 結論 - 71 - 5.2 研究限制與未來建議 - 73 - 參考文獻 - 75 - 附錄 - 80 - | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 導流板 | zh_TW |
| dc.subject | 水力發電 | zh_TW |
| dc.subject | 效率改善 | zh_TW |
| dc.subject | 流場分析 | zh_TW |
| dc.subject | 水動力式渦輪機 | zh_TW |
| dc.subject | Hydrokinetic turbine | en |
| dc.subject | Efficiency enhancement | en |
| dc.subject | Deflector device | en |
| dc.subject | Hydropower | en |
| dc.subject | Flow analysis | en |
| dc.title | 以水槽試驗及數值模式分析垂直軸水動力渦輪機轉動效率之研究 | zh_TW |
| dc.title | Comparative study of CFD modeling and flume experiments on enhancing vertical-axis hydrokinetic turbine efficiency | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡明哲;吳清森 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Che Hu;Ching-Sen Wu | en |
| dc.subject.keyword | 水力發電,導流板,水動力式渦輪機,流場分析,效率改善, | zh_TW |
| dc.subject.keyword | Hydropower,Deflector device,Hydrokinetic turbine,Flow analysis,Efficiency enhancement, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202400274 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-16 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 9.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
