請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93215完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮凱 | zh_TW |
| dc.contributor.advisor | Jungkai Alfred Chen | en |
| dc.contributor.author | 張繼剛 | zh_TW |
| dc.contributor.author | Chi-Kang Chang | en |
| dc.date.accessioned | 2024-07-23T16:20:04Z | - |
| dc.date.available | 2024-07-24 | - |
| dc.date.copyright | 2024-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-16 | - |
| dc.identifier.citation | [Amb04] F. Ambro. Nef dimension of minimal models. Mathematische Annalen,330(2):309–322, 2004.
[Amb05] F. Ambro. The moduli b-divisor of an lc-trivial fibration. Compositio Mathematica, 141(2):385–403, 2005. [AO00] D. Abramovich and F. Oort. Alterations and resolution of singularities, pages 39–108. Springer, Basel, 2000. [BBC23] M. Benozzo, I. Brivio, and C.K. Chang. Superadditivity of anticanonical Iitaka dimension for contractions with F-split fibres. arXiv preprint, arXiv:2309.16580, 2023. [BBP13] S. Boucksom, A. Broustet, and G. Pacienza. Uniruledness of stable base loci of adjoint linear systems via Mori theory. Mathematische Zeitschrift, 275(1-2):499–507, 2013. [BC15] C. Birkar and J.A. Chen. Varieties fibered over abelian varieties with fibers of log general type. Advances in Mathematics, 270:206–222, 2015. [BC16] C. Birkar and Y. Chen. Images of manifolds with semi-ample anti-canonical divisor. Journal of Algebraic Geometry, 25(2):273–287, 2016. [BCE+00] T. Bauer, F. Campana, T. Eckl, S. Kebekus, T. Peternell, S. Rams, T. Szemberg, and L. Wotzlaw. A reduction map for nef line bundles. In Complex geometry: collection of papers dedicated to Hans Grauert, pages 27–36. Springer, Berlin, 2000. [BCHM10] C. Birkar, P. Cascini, C. Hacon, and J. McKernan. Existence of minimal models for varieties of log general type. Journal of the American Mathematical Society, 23(2):405–468, 2010. [BDPP13] S. Boucksom, J. P. Demailly, M. Paun, and T. Peternell. The pseudo-effective cone of a compact Kahler manifold and varieties of negative Kodaira dimension. Journal of Algebraic Geometry, 22(2):201–248, 2013. [Ben22] M. Benozzo. Iitaka conjecture for anticanonical divisors in positive characteristics. arXiv preprint, arXiv:2204.02045, 2022. [Bir09] C. Birkar. The Iitaka conjecture Cn,m in dimension six. Compositio Mathematica, 145(6):1442–1446, 2009. [Bir20] C. Birkar. Generalised pairs in birational geometry. arXiv preprint, arXiv:2008.01008, 2020. [BKK+15] T. Bauer, S. J. Kovács, A. Kurönya, E. C. Mistretta, T. Szemberg, and S. Urbinati. On positivity and base loci of vector bundles. European Journal of Mathematics, 1(2):229–249, 2015. [BP04] T. Bauer and T. Peternell. Nef reduction and anticanonical bundles. Asian Journal of Mathematics, 8(2):315–352, 2004. [BS95] M. Beltrametti and A. Sommese. The adjunction theory of complex projective varieties. Walter de Gruyter & Co., Berlin, 1995. [Cam04] F. Campana. Orbifolds, special varieties and classification theory. Annales de l’institut Fourier, 54:499–630, 2004. [Cao18] J. Cao. Kodaira dimension of algebraic fiber spaces over surfaces. Algebraic Geometry, 5(6):728–741, 2018. [CB13] S. Cacciola and L. Di Biagio. Asymptotic base loci on singular varieties. Mathematische Zeitschrift, 275(1):151–166, 2013. [CCP08] F. Campana, J. A. Chen, and T. Peternell. Strictly nef divisors. Mathematische Annalen, 342(3):363–383, 2008. [CD13] C. and S. Druel. On Fano foliations. Advances in Mathematics, 238:70–118, 2013. [Cha23a] C.K. Chang. Generalized Nonvanishing Conjecture and Iitaka Conjecture. arXiv preprint, arXiv:2312.04015, 2023. [Cha23b] C.K. Chang. Positivity of anticanonical divisors in algebraic fibre spaces. Mathematische Annalen, 385(1-2):787–809, 2023. [Cha23c] P. Chaudhuri. An inductive approach to generalized abundance using nef reduction. Comptes Rendus Mathematique, 361:417–421, 2023. [Cor95] A. Corti. Factoring birational maps of threefolds after Sarkisov. Journal of Algebraic Geometry, 4(2):223–254, 1995. [Cor00] A. Corti. Singularities of linear systems and 3-fold birational geometry, Explicit birational geometry of 3-folds. London Mathematical Society Lecture Note series. Cambridge University Press, Cambridge, 2000. [CP06] I. Cheltsov and J. Park. Sextic double solids. arXiv preprint. arXiv: math.AG/0607776, 2006. [CP11] F. Campana and T. Peternell. Geometric stability of the cotangent bundle and the universal cover of a projective manifold (with an appendix by Matei Toma). Bulletin de la Societe Mathematique de France, 139:41–74, 2011. [CP17] J. Cao and M. Paun. Kodaira dimension of algebraic fiber spaces over Abelian varieties. Inventiones Mathematicae, 207(1):345–387, 2017. [CS08] I. Cheltsov and K. A. Shramov. Log-canonical thresholds for nonsingular threefolds. Russian Mathematical Surveys, 63(5):859–958, 2008. [CZ13] M. Chen and Q. Zhang. On a question of Demailly–Peternell–Schneider. Journal of the European Mathematical Society, 15:1853–1858, 2013. [Deb01] O. Debarre. Higher-dimensional algebraic geometry. Springer-Verlags, New York, 2001. [Den21] Y. Deng. Applications of the Ohsawa-Takegoshi Extension Theorem to Direct Image Problems. International Mathematics Research Notices, 2021(23):17611–17633, 2021. [DPS01] J. Demailly, T. Peternell, and M. Schneider. Pseudo-effective line bundles on compact Kahler manifolds. International Journal of Mathematics, 12:689–741, 2001. [EG19] S. Ejiri and Y. Gongyo. Nef anti-canonical divisors and rationally connected fibrations. Compositio Mathematica, 155:1444–1456, 2019. [EIM20] S. Ejiri, M. Iwai, and S. Matsumura. On asymptotic base loci of relative anticanonical divisor of algebraic fibre space. arXiv preprint, arXiv:2005.04566, 2020. [ELM+06] L. Ein, R. Lazarsfeld, M. Mustata, M. Nakamaye, and M. Popa. Asymptotic invariants of base loci. Annales de l’institut Fourier, 56:1701–1734, 2006. [FG12] O. Fujino and Y. Gongyo. On images of weak Fano manifolds. Mathematische Zeitschrift, 270(1-2):531–544, 2012. [FG14] O. Fujino and Y. Gongyo. On the moduli b-divisors of lc-trivial fibrations. Annales de l’institut Fourier, 64(4):1721–1735, 2014. [FM00] O. Fujino and S. Mori. A canonical bundle formula. Journal of Differential Geometry, 56:167–188, 2000. [Fuj78] T. Fujita. On Kahler fiber spaces over curves. Journal of the Mathematical Society of Japan, 30(4):779–794, 1978. [Fuj04] O. Fujino. Termination of 4-fold canonical flips. Publications of the Research Institute for Mathematical Sciences, 40(1):231–237, 2004. [Fuj05] O. Fujino. Remarks on algebraic fiber spaces. Journal of Mathematics of Kyoto University , 45(4):683–699, 2005. [Fuj11] O. Fujino. On Kawamata’s theorem. In Classification of Algebraic Varieties, EMS Series of Congress Reports, pages 305–315. European MathematicalSociety, Zürich, 2011. [Fuj17] O. Fujino. Notes on the weak positivity theorems. In Algebraic Varieties and Automorphism Groups, Advanced Studies in Pure Mathematics, pages 73–118. The Mathematical Society of Japan, Tokyo, 2017. [Fuj20] O. Fujino. Iitaka conjecture-an introduction. SpringerBriefs in Mathematics. Springer, Singapore, 2020. [Has20] K. Hashizume. Log Iitaka conjecture for abundant log canonical fibrations. Proceedings of the Japan Academy Series A, 96:87–92, 2020. [HL20] J. Han and W. Liu. On numerical nonvanishing for generalized log canonical pairs. Documenta Mathematica, 25:93–123, 2020. [HM07] C. D. Hacon and J. McKernan. On Shokurov's rational connectedness conjecture. Duke Mathematical Journal, 138(1):119–136, 2007. [HPS18] C.D. Hacon, M. Popa, and C. Schnell. Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Paun. In Local and Global Methods in Algebraic Geometry, Contemporary Mathematics, pages 143–195. American Mathematical Society, 2018. [Kaw81] Y. Kawamata. Characterization of abelian varieties. Compositio Mathematica, 43:253-276, 1981. [Kaw82] Y. Kawamata. Kodaira dimension of algebraic fiber spaces over curves. Inventiones Mathematicae, 66(1):57–71, 1982. [Kaw85] Y. Kawamata. Minimal models and the Kodaira dimension of algebraic fiber spaces. Journal fur die Reine und Angewandte Mathematik, 363:1–46, 1985. [Kaw92a] Y. Kawamata. Abundance theorem for minimal threefolds. Inventiones Mathematicae, 108(2):229–246, 1992. [Kaw92b] Y. Kawamata. Termination of log flips for algebraic 3-folds. International Journal of Mathematics, 3(5):653–659, 1992. [Kaw98] Y. Kawamata. Subadjunction of log canonical divisors, II. American Journal of Mathematics, 120:893–899, 1998. [KM98] J. Kollár and S. Mori. Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, 1998. [KMM92a] J. Kollár, Y. Miyaoka, and S. Mori. Rational connectedness and boundedness of Fano manifolds. Journal of Differential Geometry, 36(3):765–779, 1992. [KMM92b] J. Kollár, Y. Miyaoka, and S. Mori. Rationally connected varieties. Journal of Algebraic Geometry, 1:429–448, 1992. [KOPP22] Igor Krylov, Takuzo Okada, Erik Paemurru, and Jihun Park. 2n2 inequality for cA1 points and applications to birational rigidity. arXiv preprint, arXiv:2205.12743v2, 2022. [Lai11] C-J. Lai. Varieties fibered by good minimal models. Mathematische Annalen, 350(3):533–547, 2011. [Laz04] R. Lazarsfeld. Positivity in algebraic geometry, volume I and II. Springer, New York, 2004. [Les14] J. Lesieutre. The diminished base locus is not always closed. Compositio Mathematica, 150(10):1729–1741, 2014. [LMP+22] V. Lazić, S. Matsumura, T. Peternell, N. Tsakanikas, and Z. Xie. The nonvanishing problem for varieties with nef anticanonical bundle. arXiv preprint, arXiv:2202.13814, 2022. [LP20] V. Lazić and T. Peternell. On generalised abundance, I. Publications of the Research Institute for Mathematical Sciences, 56(2):353–389, 2020. [Mat14] D. Matsushita. On almost holomorphic Lagrangian fibrations. Mathematische Annalen, 358(3):565–572, 2014. [Mor85] S. Mori. Classification of higher-dimensional varieties. In Algebraic geometry, volume 46 of Proceedings of Symposia in Pure Mathematics, pages 269–331. American Mathematical Society, 1985. [Nak04] N. Nakayama. Zariski-decomposition and abundance, volume 14 of MSJ Memoirs. The Mathematical Society of Japan, 2004. [PS22] M. Popa and C. Schnell. On the behavior of Kodaira dimension under smooth morphisms. arXiv preprint, arXiv:2202.02825, 2022. [Ser95] F. Serrano. Strictly nef divisors and Fano threefolds. Journal fur die Reine und Angewandte Mathematik, 464:187–206, 1995. [Sho03] V. V. Shokurov. Prelimiting flips. Proceedings of the Steklov Institute of Mathematics, 240:75–213, 2003. [Sta] StacksProject. https://stacks.math.columbia.edu. [Tsu00] H. Tsuji. Numerical trivial fibrations. arXiv preprint, arXiv:math/0001023v6, 2000. [Uen75] K. Ueno. Classification theory of algebraic varieties and compact complex spaces, volume 439 of Lecture Notes in Mathematics. Springer-Verlag, 1975. [Vie83] E. Viehweg. Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces. In Algebraic varieties and analytic varieties, page 329–353. Mathematical Society of Japan, Tokyo, 1983. [WZ21] J. Wang and G. Zhong. Strictly nef divisors on singular threefolds. arXiv preprint, arXiv:2112.03117, 2021. [Zha05] Q. Zhang. On projective varieties with nef anticanonical divisors. Mathematische Annalen, 332:697–703, 2005. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93215 | - |
| dc.description.abstract | 本論文的主要目的是探討在代數纖維空間中正則除子與反正則除子的正性表現,首先我們會證明給定一個代數纖維空間f :X→Y,若對X上的奇異點有一些限制,X的反正則除子−KX為一擬有效/Q-有效/巨大除子,且−KX之相對應的的漸進基底點集合並不支配Y 的話,則−KY 也會是擬有效/Q-有效/巨大除子。作為本結果的推論,我們可以證明若X僅具備川又對數端末(klt)奇異點/對數正規(lc) 奇異點,則f 的相對反正則除子−KX/Y 必然不是豐富除子/巨大nef除子。
第二部分我們會先證明對於滿足特定條件的代數纖維空間,其介於X以及F 的反正則切斷環之間的限制映射會是一個賦次環之間的環單射。該定理為江尻-權業單射性定理的一個變形。做為此一單射性定理的應用,我們會證明一個反正則除子版本的飯高猜想,其具體敘述如下:給定一代數纖維空間f :X →Y, 若X僅具有klt Q-Gorenstein奇異點,−KX 為一Q-有效除子,且其穩定基底點集合 B(−KX) 並不支配Y 的話,則對於f 的一般纖維F,我們有以下的不等式 κ(−KX) ≤ κ(−KF)+κ(−KY)。 於第三部分我們則會證明一般化非消滅猜想的部分特例並討論其與飯高猜想的關聯。一般化非消滅猜想敘述為給定一klt對(X,∆),X上的一個nefQ-Cartier除子L,以及一非負的有理數t,若KX+∆+tL為一擬有效Q-因子,則其會與某一有效Q-因子數值同值。於本論文中我們會證明對於有非負小平次元的三維多樣體, 若其小平次元與q(X)兩不變量當中有至少一個大於零,則該多樣體滿足一般化非消滅猜想。做為此結論的應用,我們可以證明對於代數纖維空間f :X→Y,若X的維度不超過七維且已知X有非負的小平維度,則該代數纖維空間滿足飯高猜想,也即是滿足以下不等式 κ(X) ≥ κ(F)+κ(Y)。 最後,我們會再額外補充一些有關反正則除子具有良好正性的代數多樣體的一些相關討論。 | zh_TW |
| dc.description.abstract | In this thesis, we will discuss the positivity behavior of the canonical divisor and the anticanonical divisor in algebraic fibre spaces. At first, we will prove for an algebraic fibre space f : X → Y, if X has mild singularities, −KX is pseudoeffective (resp. effective, big), and the corresponding asymptotic base locus of −KX does not dominate Y , then −KY isalso pseudoeffective (resp. effective, big). As a corollary, we can prove if X has klt (resp. lc) singularities, then the relative anticanonical divisor −KX/Y could not be nef and big (resp. could not be ample).
Secondly, we will prove for certainly algebraic fibre spaces, the restriction map between the anticanonical section ring of X and F is an injective graded ring homomorphism. This theorem is a variant of Ejiri-Gongyo’s Injectivity Theorem. As an application, we will prove an ”anticanonical version” of the Iitaka Conjecture. The statement is:if X has at worst klt Q-Gorenstein singularities, and −KX is Q-effective with the stable base locus B(−KX) does not dominate Y, the for a general fibre F of f, we have the inequality κ(−KX) ≤ κ(−KF)+κ(−KY). Thirdly, we will prove some special cases of the Generalized Nonvanishing Conjecture and discuss its relation with the Iitaka Conjecture. The Generalized Nonvanishing Conjecture states that for a klt pair (X,∆), a nef Q-Cartier divisor L on X, and a non-negative rational number t, if KX +∆+tL is pseudoeffective, then it should numerically equivalent to an effective Q-divisor. In this thesis, we will prove that for threefolds with non-negative Kodaira dimension, if either the Kodaira dimension or the irregularity is positive, then the Generalized Nonvanishing Conjecture holds. As an application, we can show the Iitaka conjecture is true if X has non-negative Kodaira dimension and the dimension of X is at most seven, that is, for an algebraic fibre space f : X → Y with general fibre F, if dimX ≤ 7 and κ(X) ≥ 0, then we have κ(X) ≥ κ(F)+κ(Y). Finally, we will give some other miscellanies results about varieties whose anticanonical divisor has good positivities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:20:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-23T16:20:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements iii
摘要 v Abstract vii Contents ix Chapter 1 Introduction 1 Chapter 2 Preliminaries 7 2.1 Algebraic geometry and birational geometry background . . . . . . . 7 2.1.1 Conventions and notations . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Basic notions in birational geometry . . . . . . . . . . . . . . . . . 8 2.1.3 The cone of divisors, the cone of 1-cycles, and the Mori cone . . . . 9 2.1.4 Singularities of pairs . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Minimal Model Program and Abundance Conjecture . . . . . . . . . 13 2.2.1 Numerical dimension, abundant divisors, and the Abundance Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 The Cone Theorem and Fundamentals of the Minimal Model Program 14 2.3 Asymptotic base locus . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 The nef reduction map and nef dimension . . . . . . . . . . . . . . . 22 Chapter 3 The geometry of algebraic fibre spaces 27 3.1 Basic properties and the Weakly Positive Theorem . . . . . . . . . . 27 3.2 Canonical bundle formulas . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 The klt-trivial fibration and Ambro’s Canonical bundle formula . . . 31 3.2.2 The canonical bundle formula of Fujino-Mori . . . . . . . . . . . . 34 Chapter 4 Positivity of anticanonical divisors in algebraic fibre spaces 37 4.1 Pseudoeffectiveness and bigness of anticanonical divisors . . . . . . 40 4.2 Effectiveness of anticanonical Iitaka dimension and the anticanonical Kodaira dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Generalization to rational maps. . . . . . . . . . . . . . . . . . . . . 60 Chapter 5 The Iitaka Conjecture and the Generalized Nonvanishing Conjecture 67 5.1 The Generalized Nonvanishing Conjecture in dimension 3 . . . . . . 70 5.2 The Iitaka Conjecture in dimension 7 . . . . . . . . . . . . . . . . . 82 Chapter 6 Miscellanies 87 6.1 Computation of asymptotic base locus . . . . . . . . . . . . . . . . . 87 6.2 Maximal rationally connected fibration . . . . . . . . . . . . . . . . 90 Chapter 7 Further questions and discussions 93 7.1 Generalized Nonvanishing Conjecture, Iitaka Conjecture, and Serrano Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2 Iitaka fibration of nef anticanonical divisors . . . . . . . . . . . . . . 94 7.3 Birationally (super)rigidity of Fano threefolds . . . . . . . . . . . . . 95 References 99 | - |
| dc.language.iso | en | - |
| dc.subject | 代數纖維空間 | zh_TW |
| dc.subject | 正則除子 | zh_TW |
| dc.subject | 反正則除子 | zh_TW |
| dc.subject | 弱正性定理 | zh_TW |
| dc.subject | 漸進基底點 | zh_TW |
| dc.subject | 反正則飯高維度 | zh_TW |
| dc.subject | 飯高猜想 | zh_TW |
| dc.subject | 一般化非消滅猜想 | zh_TW |
| dc.subject | nef縮小映射 | zh_TW |
| dc.subject | nef reduction map | en |
| dc.subject | asymptotic base locus | en |
| dc.subject | anti-canonical Iitaka dimension | en |
| dc.subject | Iitaka Conjecture | en |
| dc.subject | Generalized Nonvanishing Conjecture | en |
| dc.subject | algebraic fibre space | en |
| dc.subject | canonical divisor | en |
| dc.subject | anticanonical divisor | en |
| dc.subject | weakly positivity theorem | en |
| dc.title | 代數纖維空間中正則除子與反正則除子的正性表現 | zh_TW |
| dc.title | Positivity of Canonical and Anticanonical Divisors in Algebraic Fibre Spaces | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 賴青瑞;林學庸;陳俊成;卓士堯 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Jui Lai;Hsueh-Yung Lin;Jiun-Cheng Chen;Shin-Yao Jow | en |
| dc.subject.keyword | 代數纖維空間,正則除子,反正則除子,弱正性定理,漸進基底點,反正則飯高維度,飯高猜想,一般化非消滅猜想,nef縮小映射, | zh_TW |
| dc.subject.keyword | algebraic fibre space,canonical divisor,anticanonical divisor,weakly positivity theorem,asymptotic base locus,anti-canonical Iitaka dimension,Iitaka Conjecture,Generalized Nonvanishing Conjecture,nef reduction map, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202401804 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-17 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 734.36 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
