請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93203
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建彰 | zh_TW |
dc.contributor.advisor | Jian-Zhang Chen | en |
dc.contributor.author | 蘇昱倫 | zh_TW |
dc.contributor.author | Yu-Lun Su | en |
dc.date.accessioned | 2024-07-23T16:16:34Z | - |
dc.date.available | 2024-07-24 | - |
dc.date.copyright | 2024-07-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-18 | - |
dc.identifier.citation | 參考文獻
1. Su, Y.-L., et al., Low-Pressure Plasma-Processed NiCo Metal–Organic Framework for Oxygen Evolution Reaction and Its Application in Alkaline Water Electrolysis Module. Journal of Composites Science, 2024. 8(1): p. 19. 2. Oldham, K. and J. Myland, Fundamentals of electrochemical science. 2012: Elsevier. 3. Cheng, F., et al., Enhancing Electrocatalytic Oxygen Reduction on MnO 2 with Vacancies. Angewandte Chemie, 2013. 125(9). 4. Du, X., G. Ma, and X. Zhang, Experimental and theoretical understanding on electrochemical activation processes of nickel selenide for excellent water-splitting performance: comparing the electrochemical performances with M–NiSe (M= Co, Cu, and V). ACS sustainable chemistry & engineering, 2019. 7(23): p. 19257-19267. 5. Yu, L., et al., Characteristics of a sintered porous Ni–Cu alloy cathode for hydrogen production in a potassium hydroxide solution. Energy, 2016. 97: p. 498-505. 6. Wu, Y., et al., Potentiostatic electrodeposition of self-supported NiS electrocatalyst supported on Ni foam for efficient hydrogen evolution. Materials & Design, 2021. 198: p. 109316. 7. Suen, N.-T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365. 8. Maeda, K., et al., Photocatalyst releasing hydrogen from water. Nature, 2006. 440(7082): p. 295-295. 9. Tang, C., et al., Fe‐doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Advanced materials, 2017. 29(2): p. 1602441. 10. Ahmed, Z., et al., How do green energy technology investments, technological innovation, and trade globalization enhance green energy supply and stimulate environmental sustainability in the G7 countries? Gondwana Research, 2022. 112: p. 105-115. 11. Santos, D.M., C.A. Sequeira, and J.L. Figueiredo, Hydrogen production by alkaline water electrolysis. Química Nova, 2013. 36: p. 1176-1193. 12. Rashid, M., et al., Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology, 2015. 13. Hall, D., Electrodes for alkaline water electrolysis. Journal of the Electrochemical Society, 1981. 128(4): p. 740. 14. Ma, S., et al., One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. Journal of Power Sources, 2016. 301: p. 219-228. 15. LeRoy, R., Industrial water electrolysis: present and future. International Journal of Hydrogen Energy, 1983. 8(6): p. 401-417. 16. Zhao, M., et al., Ultrathin 2D metal–organic framework nanosheets. Advanced Materials, 2015. 27(45): p. 7372-7378. 17. Ensafi, A.A., et al., Galvanic exchange at layered doubled hydroxide/N-doped graphene as an in-situ method to fabricate powerful electrocatalysts for hydrogen evolution reaction. Energy, 2016. 116: p. 1087-1096. 18. Lyons, M.E. and M.P. Brandon, The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution. Part 1-Nickel. International Journal of Electrochemical Science, 2008. 3(12): p. 1386-1424. 19. Hall, D.S., et al., Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015. 471(2174): p. 20140792. 20. Ishaq, H., I. Dincer, and C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy, 2022. 47(62): p. 26238-26264. 21. Pareek, A., et al., Insights into renewable hydrogen energy: Recent advances and prospects. Materials Science for Energy Technologies, 2020. 3: p. 319-327. 22. Yan, D., et al., Defect chemistry of nonprecious‐metal electrocatalysts for oxygen reactions. Advanced materials, 2017. 29(48): p. 1606459. 23. Yu, Z.Y., et al., Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Advanced Materials, 2021. 33(31): p. 2007100. 24. Dou, S., et al., Plasma‐assisted synthesis and surface modification of electrode materials for renewable energy. Advanced materials, 2018. 30(21): p. 1705850. 25. Mistry, H., et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nature communications, 2016. 7(1): p. 12123. 26. Wang, Z., et al., Catalyst preparation with plasmas: how does it work? ACS catalysis, 2018. 8(3): p. 2093-2110. 27. Holladay, J.D., et al., An overview of hydrogen production technologies. Catalysis today, 2009. 139(4): p. 244-260. 28. Zou, X. and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015. 44(15): p. 5148-5180. 29. Stamenkovic, V.R., et al., Energy and fuels from electrochemical interfaces. Nature materials, 2017. 16(1): p. 57-69. 30. Marini, S., et al., Advanced alkaline water electrolysis. Electrochimica Acta, 2012. 82: p. 384-391. 31. Morales-Guio, C.G. and X. Hu, Amorphous molybdenum sulfides as hydrogen evolution catalysts. Accounts of chemical research, 2014. 47(8): p. 2671-2681. 32. Seh, Z.W., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321): p. eaad4998. 33. Tran, T.Q.N., G. Das, and H.H. Yoon, Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection. Sensors and Actuators B: Chemical, 2017. 243: p. 78-83. 34. Cheng, Y., et al., Synthesis of “Quasi-Ce-MOF” electrocatalysts for enhanced urea oxidation reaction performance. ACS sustainable chemistry & engineering, 2020. 8(23): p. 8675-8680. 35. Amouzesh, S.P., et al., MIL-100 (Fe)/ZnO nanocomposite sensors: An enhanced ammonia selectivity and low operating temperature. Sensors and Actuators B: Chemical, 2024. 399: p. 134791. 36. Wang, Y., et al., Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Advanced Energy Materials, 2014. 4(16): p. 1400696. 37. Zhu, K., et al., The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano energy, 2020. 73: p. 104761. 38. Marbán, G. and T. Valdés-Solís, Towards the hydrogen economy? International journal of hydrogen energy, 2007. 32(12): p. 1625-1637. 39. Barreto, L., A. Makihira, and K. Riahi, The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy, 2003. 28(3): p. 267-284. 40. De Levie, R., The electrolysis of water. Journal of Electroanalytical Chemistry, 1999. 476(1): p. 92-93. 41. Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International Journal of hydrogen energy, 2010. 35(10): p. 5043-5052. 42. Sutherland, R.D., Performance of different proton exchange membrane water electrolyser components. 2012, North-West University. 43. Ito, H., et al., Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochimica Acta, 2013. 100: p. 242-248. 44. Millet, P., et al., Electrochemical performances of PEM water electrolysis cells and perspectives. International Journal of Hydrogen Energy, 2011. 36(6): p. 4134-4142. 45. Rossmeisl, J., et al., Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry, 2007. 607(1-2): p. 83-89. 46. Bessarabov, D., et al., PEM electrolysis for hydrogen production: principles and applications. 2016: CRC press. 47. Feng, Q., et al., A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. Journal of Power Sources, 2017. 366: p. 33-55. 48. Mandal, M., G. Huang, and P.A. Kohl, Anionic multiblock copolymer membrane based on vinyl addition polymerization of norbornenes: Applications in anion-exchange membrane fuel cells. Journal of Membrane Science, 2019. 570: p. 394-402. 49. Mandal, M., G. Huang, and P.A. Kohl, Highly conductive anion-exchange membranes based on cross-linked poly (norbornene): vinyl addition polymerization. ACS Applied Energy Materials, 2019. 2(4): p. 2447-2457. 50. Xu, Q., et al., Anion exchange membrane water electrolyzer: electrode design, lab-scaled testing system and performance evaluation. EnergyChem, 2022. 4(5): p. 100087. 51. Miller, H.A., et al., Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustainable Energy & Fuels, 2020. 4(5): p. 2114-2133. 52. Mandal, M., Recent advancement on anion exchange membranes for fuel cell and water electrolysis. ChemElectroChem, 2021. 8(1): p. 36-45. 53. Gopalakrishnan, M., et al., Recent advances in oxygen electrocatalysts based on tunable structural polymers. Materials Today Chemistry, 2022. 23: p. 100632. 54. Liang, Q., et al., Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coordination Chemistry Reviews, 2020. 424: p. 213488. 55. Tahir, M., et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017. 37: p. 136-157. 56. Song, F., et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. Journal of the American Chemical Society, 2018. 140(25): p. 7748-7759. 57. Kim, J.S., et al., Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Advanced Energy Materials, 2018. 8(11): p. 1702774. 58. Man, I.C., et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 2011. 3(7): p. 1159-1165. 59. Gao, Z.W., et al., Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. Advanced materials, 2019. 31(11): p. 1804769. 60. Zheng, Y., et al., Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory. Angewandte Chemie International Edition, 2015. 54(1): p. 52-65. 61. Jiao, Y., et al., Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015. 44(8): p. 2060-2086. 62. Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. 63. Sheng, W., H.A. Gasteiger, and Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. Journal of The Electrochemical Society, 2010. 157(11): p. B1529. 64. Zheng, Y., et al., The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angewandte Chemie International Edition, 2018. 57(26): p. 7568-7579. 65. Morales-Guio, C.G., L.-A. Stern, and X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014. 43(18): p. 6555-6569. 66. Lu, F., et al., First‐row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small, 2017. 13(45): p. 1701931. 67. Wei, C., et al., Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Advanced Materials, 2019. 31(31): p. 1806296. 68. Wei, C. and Z.J. Xu, The comprehensive understanding of as an evaluation parameter for electrochemical water splitting. 2018, Wiley Online Library. p. 1800168. 69. !!! INVALID CITATION !!! . 70. Wang, J., et al., Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications. Advanced materials, 2017. 29(14): p. 1605838. 71. Pehlivan, I.l.B., et al., Impedance spectroscopy modeling of nickel–molybdenum alloys on porous and flat substrates for applications in water splitting. The Journal of Physical Chemistry C, 2019. 123(39): p. 23890-23897. 72. Anantharaj, S. and S. Noda, Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis. ChemElectroChem, 2020. 7(10): p. 2297-2308. 73. Connor, P., et al., The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst. Zeitschrift für Physikalische Chemie, 2020. 234(5): p. 979-994. 74. 王英齊, 鎳鐵金屬有機骨架/鎳鐵氧化物混成電催化材料於鹼性電解水之應用. 2023. 75. Vij, V., et al., Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis, 2017. 7(10): p. 7196-7225. 76. Liu, G., et al., Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2016. 138(29): p. 9128-9136. 77. Li, R., et al., The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. Journal of Power Sources, 2017. 341: p. 250-256. 78. Guo, M., et al., Co9S8-Catalyzed Growth of Thin-Walled Graphite Microtubes for Robust, Efficient Overall Water Splitting. ChemSusChem, 2018. 11(23): p. 4150-4155. 79. Chen, X., et al., Cobalt and nitrogen codoped porous carbon as superior bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reaction in alkaline medium. Chinese Chemical Letters, 2019. 30(3): p. 681-685. 80. Deng, Y.H., et al., One-step chemical transformation synthesis of CoS2 nanosheets on carbon cloth as a 3D flexible electrode for water oxidation. Journal of Power Sources, 2018. 397: p. 44-51. 81. Wei, S., et al., CoS2 nanoneedle array on Ti mesh: A stable and efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production. Electrochimica Acta, 2017. 246: p. 776-782. 82. Zheng, Y., et al., High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 2016. 138(49): p. 16174-16181. 83. Guo, H., et al., Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution. ACS Nano, 2019. 13(11): p. 13225-13234. 84. Wang, J.-Q., et al., Laser-Generated Grain Boundaries in Ruthenium Nanoparticles for Boosting Oxygen Evolution Reaction. ACS Catalysis, 2020. 10(21): p. 12575-12581. 85. Shi, Q., et al., Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chemical Society Reviews, 2019. 48. 86. Yao, Q., et al., A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution. Nano Energy, 2021. 84: p. 105909. 87. Tuo, Y., et al., Constructing RuCoOx/NC Nanosheets with Low Crystallinity within ZIF-9 as Bifunctional Catalysts for Highly Efficient Overall Water Splitting. Chemistry – An Asian Journal, 2021. 16(17): p. 2511-2519. 88. Schlögl, R., The Role of Chemistry in the Energy Challenge. ChemSusChem, 2010. 3(2): p. 209-222. 89. Katsounaros, I., et al., Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angewandte Chemie International Edition, 2014. 53(1): p. 102-121. 90. Bhargava, R., et al., Hydroelectric Cell Based on a Cerium Oxide-Decorated Reduced Graphene Oxide (CeO2–rG) Nanocomposite Generates Green Electricity by Room-Temperature Water Splitting. Energy & Fuels, 2020. 34(10): p. 13067-13078. 91. Lin, Y.-C., et al., Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020. 12(38): p. 42634-42643. 92. Singh, D.K., et al., Pick a Wick: A Simple, Ultrafast Combustion Synthesis of Co3O4 Dispersed Carbon for Enhanced Oxygen Evolution Kinetics. ACS Applied Energy Materials, 2018. 1(9): p. 4448-4452. 93. Wang, Q., et al., Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn–Air Batteries. ACS Energy Letters, 2018. 3(5): p. 1183-1191. 94. Zhang, H., Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015. 9(10): p. 9451-9469. 95. Jiang, J., et al., Bioinspired Cobalt–Citrate Metal–Organic Framework as an Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces, 2017. 9(8): p. 7193-7201. 96. Pan, Y., et al., Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society, 2018. 140(7): p. 2610-2618. 97. Srinivas, G., et al., Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system. Energy Environ. Sci., 2016. 9. 98. Wang, L., et al., Fe/Ni Metal–Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential. ACS Applied Materials & Interfaces, 2016. 8(26): p. 16736-16743. 99. Jiang, H.-L., et al., From Metal–Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. Journal of the American Chemical Society, 2011. 133(31): p. 11854-11857. 100. Radhakrishnan, L., et al., Preparation of Microporous Carbon Fibers through Carbonization of Al-Based Porous Coordination Polymer (Al-PCP) with Furfuryl Alcohol. Chemistry of Materials, 2011. 23(5): p. 1225-1231. 101. Hemavibool, S., The microstructure of synthetic aggregate produced from waste materials and its influence on the properties of concrete. 2007, University of Leeds. 102. Chen, Y., Electrical breakdown of Gases in subatmospheric pressure. 2016, Auburn University. 103. Sabat, K., Physics and Chemistry of Solid State Direct Reduction of Iron Ore by Hydrogen Plasma. Physics and Chemistry of Solid State, 2021. 22: p. 292-300. 104. Chao, T., Introduction to semiconductor manufacturing technology. 2000: Prentice Hall New Jersey. 105. Gallo, C., Coronas and gas discharges in electrophotography: A review. IEEE Transactions on Industry Applications, 1975(6): p. 739-748. 106. Dalei, G., et al., Surface modification of cellulose/polyvinyl alcohol biocomposites by non-thermal argon plasma: applications towards biological relevance. Cellulose, 2019. 26. 107. Song, J.-B., et al., Contamination Particles and Plasma Etching Behavior of Atmospheric Plasma Sprayed Y2O3 and YF3 Coatings under NF3 Plasma. Coatings, 2019. 9: p. 102. 108. Morishita, T., et al., Study on charge neutralization effect by electron cyclotron resonance plasma source in high vacuum. Journal of Physics: Conference Series, 2019. 1322: p. 012018. 109. Gohil, J.M. and K. Dutta, Structures and properties of polymers in ion exchange membranes for hydrogen generation by water electrolysis. Polymers for Advanced Technologies, 2021. 32(12): p. 4598-4615. 110. Chen, W., et al., Highly conducting anion-exchange membranes based on cross-linked poly (norbornene): ring opening metathesis polymerization. ACS Applied Energy Materials, 2019. 2(4): p. 2458-2468. 111. Konovalova, A., et al., Blend membranes of polybenzimidazole and an anion exchange ionomer (FAA3) for alkaline water electrolysis: Improved alkaline stability and conductivity. Journal of membrane science, 2018. 564: p. 653-662. 112. Arges, C.G. and V. Ramani, Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proceedings of the National Academy of Sciences, 2013. 110(7): p. 2490-2495. 113. Fujimoto, C., et al., Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells. Journal of membrane science, 2012. 423: p. 438-449. 114. Nuñez, S.A. and M.A. Hickner, Quantitative 1H NMR analysis of chemical stabilities in anion-exchange membranes. Acs Macro Letters, 2013. 2(1): p. 49-52. 115. Kaczur, J.J., et al., Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Frontiers in chemistry, 2018. 6: p. 263. 116. Merle, G., M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 2011. 377(1-2): p. 1-35. 117. Wang, Y., et al., Investigations on bubble growth mechanism during photoelectrochemical and electrochemical conversions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016. 505: p. 86-92. 118. Chandran, P., S. Bakshi, and D. Chatterjee, Study on the characteristics of hydrogen bubble formation and its transport during electrolysis of water. Chemical Engineering Science, 2015. 138: p. 99-109. 119. Mazloomi, S. and N. Sulaiman, Influencing factors of water electrolysis electrical efficiency. Renewable and Sustainable Energy Reviews, 2012. 16(6): p. 4257-4263. 120. Shen, X., et al., Experimental study on the external electrical thermal and dynamic power characteristics of alkaline water electrolyzer. International Journal of Energy Research, 2018. 42(10): p. 3244-3257. 121. Kudryavtsev, A., 3D Reconstruction in Scanning Electron Microscope : from image acquisition to dense point cloud. 2017. 122. Seibt, S. and T. Ryan, Microfluidics for time-resolved small-angle x-ray scattering, in Advances in Microfluidics and Nanofluids. 2020, IntechOpen. 123. Baruwati, B., Studies on the Synthesis, Characterization, Surface Modification and Application of Nanocrystalline Nickel Ferrite. 124. Haasch, R.T., X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES), in Practical Materials Characterization. 2014, Springer. p. 93-132. 125. Xu, L., et al., Plasma‐engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angewandte Chemie, 2016. 128(17): p. 5363-5367. 126. Fujimura, T., et al., Analysis of the effect of surface wettability on hydrogen evolution reaction in water electrolysis using micro-patterned electrodes. Electrochemistry Communications, 2019. 101: p. 43-46. 127. Lu, Z., et al., Ultrahigh hydrogen evolution performance of under‐water “superaerophobic” MoS2 nanostructured electrodes. Advanced Materials, 2014. 26(17): p. 2683-2687. 128. Santos, D., et al., Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys. Energy, 2013. 50: p. 486-492. 129. Guan, H., et al., S element-doped synergistically well-mixed MOFs as highly efficient oxygen precipitation electrocatalyst. International Journal of Hydrogen Energy, 2020. 45(46): p. 24333-24340. 130. Veeramani, V., et al., NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors. Electrochimica Acta, 2017. 247: p. 288-295. 131. Thangasamy, P., S. Shanmuganathan, and V. Subramanian, A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction. Nanoscale Advances, 2020. 2(5): p. 2073-2079. 132. Chen, Q., et al., Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. Journal of materials chemistry A, 2017. 5(36): p. 19323-19332. 133. Dai, Z., X. Du, and X. Zhang, Controlled synthesis of NiCo2O4@ Ni-MOF on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction. International Journal of Hydrogen Energy, 2022. 47(39): p. 17252-17262. 134. Kapałka, A., G. Fóti, and C. Comninellis, Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochemistry Communications, 2008. 10(4): p. 607-610. 135. Shinagawa, T., A.T. Garcia-Esparza, and K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific reports, 2015. 5(1): p. 13801. 136. Zhang, Y., et al., Effect of aligned porous electrode thickness and pore size on bubble removal capability and hydrogen evolution reaction performance. Journal of Power Sources, 2023. 580: p. 233380. 137. Li, D., et al., Defect-rich engineering of Ni-incorporated tungsten oxides micro-flowers on carbon cloth: A binder-free electrode for highly efficient hydrogen evolution reaction. Journal of Power Sources, 2022. 520: p. 230862. 138. Shervedani, R.K. and A.R. Madram, Kinetics of hydrogen evolution reaction on nanocrystalline electrodeposited Ni62Fe35C3 cathode in alkaline solution by electrochemical impedance spectroscopy. Electrochimica Acta, 2007. 53(2): p. 426-433. 139. Cossar, E., et al., Comparison of electrochemical active surface area methods for various nickel nanostructures. Journal of Electroanalytical Chemistry, 2020. 870: p. 114246. 140. Yang, Y., et al., CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019. 242: p. 132-139. 141. Liang, H. and H.N. Alshareef, A plasma‐assisted route to the rapid preparation of transition‐metal phosphides for energy conversion and storage. Small Methods, 2017. 1(7): p. 1700111. 142. Choi, E.Y. and S.H. Moon, Characterization of acrylic acid‐grafted PP membranes prepared by plasma‐induced graft polymerization. Journal of applied polymer science, 2007. 105(4): p. 2314-2320. 143. Staňo, Ľ., M. Stano, and P. Ďurina, Separators for alkaline water electrolysis prepared by plasma-initiated grafting of acrylic acid on microporous polypropylene membranes. International Journal of Hydrogen Energy, 2020. 45(1): p. 80-93. 144. Detsi, E., et al., Mesoporous Ni 60 Fe 30 Mn 10-alloy based metal/metal oxide composite thick films as highly active and robust oxygen evolution catalysts. Energy & environmental science, 2016. 9(2): p. 540-549. 145. Yin, H., et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun, 2015. 6: p. 6430. 146. Balogun, M.-S., et al., Cost-Effective Alkaline Water Electrolysis Based on Nitrogen- and Phosphorus-Doped Self-Supportive Electrocatalysts. Advanced Materials, 2017. 29(34): p. 1702095. 147. Niyitanga, T. and H. Kim, Bimetallic-based CuxCo3−xO4 nanoparticle-embedded N-doped reduced graphene oxide toward efficient oxygen evolution reaction and hydrogen evolution reaction for bifunctional catalysis. Journal of Power Sources, 2023. 580: p. 233383. 148. Mohammadi, A. and M. Mehrpooya, A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy, 2018. 158: p. 632-655. 149. Gilliam, R.J., et al., A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. International Journal of Hydrogen Energy, 2007. 32(3): p. 359-364. 150. Kothari, R., D. Buddhi, and R.L. Sawhney, Studies on the effect of temperature of the electrolytes on the rate of production of hydrogen. International Journal of Hydrogen Energy, 2005. 30(3): p. 261-263. 151. Diéguez, P.M., et al., Thermal performance of a commercial alkaline water electrolyzer: Experimental study and mathematical modeling. International Journal of Hydrogen Energy, 2008. 33(24): p. 7338-7354. 152. Shin, Y., et al., Evaluation of the high temperature electrolysis of steam to produce hydrogen. International Journal of Hydrogen Energy, 2007. 32(10): p. 1486-1491. 153. Haynes, W.M., CRC Handbook of Chemistry and Physics. 2014: CRC Press. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93203 | - |
dc.description.abstract | 在本研究中,利用鎳鈷合金有機骨架(Metal Organic Frameworks, MOF)生長在基板上,作為電催化劑,再進行低壓電漿進行表面修飾。量測電化學分析以及材料分析,最後應用於鹼性電解水模組中。
已經有不少研究顯示鎳鈷合金在有機金屬框架材料中,適合作為析氧反應的催化劑。為了得到高效能的催化劑,做了電漿處理對材料表面進行修飾,分別使用Ar, Ar/H2 (95:5) and Ar/O2 (95:5)作為工作氣體持續處理一分鐘,結果顯示,經過Ar, Ar/H2 (95:5) and Ar的氣體電漿處理,在LSV量測中,在100 mA/cm2的電流密度下,過電位可達到552、540 mV,以及Double-Layer Capacitance的增加,都說明了增加了產氧的活性,然而在電解水過程中,OER扮演重要的反應,也會影響整個系統的能量效率。 以Ar電漿處理的NiCo-MOF催化劑的電解槽在25℃、 500mA/cm2的電流密度下,能源效率從54.7%提高到62.5%。採用Ar電漿處理催化劑的鹼性水電解模組在25°C和70°C下的比能耗分別為5.20 kWh/m3和4.69 kWh/m3。由鹼性水電解模組的性能參數(例如氫氣生產率、單位能耗和能源效率),實驗結果表明,NiCo MOF 是一種用於鹼性水電解模組的高效 OER 電催化劑。經過低壓電漿表面修飾,並有助於增加催化表現。 | zh_TW |
dc.description.abstract | In this study, nickel-cobalt alloy organic frameworks (Metal Organic Frameworks, MOF) were grown on substrates as electrocatalysts, followed by surface modification using low-pressure plasma. Electrochemical and material analyses were conducted, and the catalysts were ultimately applied in alkaline electrolysis water modules.
Several studies have demonstrated that nickel-cobalt alloys in Metal Organic Frameworks materials are suitable catalysts for the oxygen evolution reaction (OER). To obtain efficient catalysts, plasma treatments were performed to modify the surface of the materials, using Ar, Ar/H2 (95:5), and Ar/O2 (95:5) as working gases for one minute each. Results showed that after treatment with Ar, Ar/H2 (95:5), and Ar plasma, the overpotentials reached 552, 540 mV at a current density of 100 mA/cm2 in LSV measurements, and an increase in Double-Layer Capacitance indicated enhanced oxygen evolution activity. However, during the electrolysis process, OER plays a crucial role and also affects the overall energy efficiency of the system. The energy efficiency of the NiCo MOF catalyst electrolyzer treated with Ar plasma at 25°C and 500 mA/cm2 increased from 54.7% to 62.5%. The specific energy consumption of the alkaline water electrolysis module using catalysts treated with Ar plasma was 5.20 kWh/m3 at 25°C and 4.69 kWh/m3 at 70°C. Experimental results based on performance parameters of the alkaline water electrolysis module (such as hydrogen production rate, unit energy consumption, and energy efficiency) demonstrate that NiCo MOF is an efficient OER electrocatalyst for alkaline water electrolysis modules. Surface modification via low-pressure plasma treatment contributes to enhancing catalytic performance. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:16:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-23T16:16:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目次
致謝 i 摘要 ii Abstract iii 目次 iv 圖次 vii 表次 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文大綱 3 第二章 理論與文獻回顧 4 2.1 氫能、水電解介紹 4 2.1.1 鹼性電解水(alkaline water electrolysis, AWE) 5 2.1.2 質子交換膜電解水 (proton-exchange membrane water electrolysis, PEMWE) 6 2.1.3 陰離子交換膜電解水 (anion-exchange membrane water electrolysis, AEMWE) 8 2.1.4 析氧反應 9 2.1.5 析氫反應 11 2.2 電化學參數 13 2.2.1 過電位與線性掃描伏安法 13 2.2.2 塔菲爾斜率(Tafel slope) 14 2.2.3 電化學阻抗圖譜 15 2.2.4 電化學活性表面積、電雙層電容與循環伏安法 17 2.2.5 氫氣理論產率與法拉第效率 18 2.3 電催化劑 19 2.3.1 鎳基材料 19 2.3.2 鈷基材料 20 2.3.3 釕基材料 20 2.3.4 碳基材料 21 2.3.5 金屬有機骨架 21 2.4 電漿 23 2.4.1 電漿介紹及原理 23 2.4.2 電漿中的碰撞方式 26 2.4.3 低壓電漿放電方式 29 第三章 實驗方法流程與各項儀器介紹 33 3.1 實驗材料與儀器及量測分析設備清單 33 3.2 實驗流程 37 3.2.1 基板選擇及處理製程 37 3.2.2 陰離子交換膜水電解系統組成 39 3.3 製程儀器設備介紹 48 3.3.1 接觸角量測儀 48 3.3.2 掃描式電子顯微鏡 49 3.3.3 X射線繞射儀 52 3.3.4 X射線光電子能譜儀 54 3.3.5 電化學工作站 56 3.3.6 電漿清潔機 58 第四章 結果與討論 60 4.1 電催化劑之電子顯微鏡表面型態分析 60 4.2 電催化劑之水接觸角分析 61 4.3 電催化劑之X射線繞射儀分析 63 4.4 電催化劑之X射線光電子能譜分析 64 4.5 電催化劑之線性掃描伏安法與塔菲爾斜率分析 67 4.6 電催化劑之電化學阻抗圖譜分析 69 4.7 電催化劑之循環伏安法與電雙層電容分析 70 4.8 電催化劑應用於鹼性電解水模組表現 73 第五章 結論與未來展望 76 參考文獻 77 個人期刊發表 89 | - |
dc.language.iso | zh_TW | - |
dc.title | 低壓電漿改質鎳鈷金屬有機骨架材料於陰離子交換膜水電解器之應用 | zh_TW |
dc.title | Low-pressure plasma-modified NiCo-MOF materials for anion exchange membrane water electrolyzers | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳奕君;羅世強;王孟菊 | zh_TW |
dc.contributor.oralexamcommittee | I-Chun Cheng;Shyh-Chyang Luo;Meng-Jiy Wang | en |
dc.subject.keyword | 析氧反應,電解水系統,電催化劑,金屬有機骨架,低壓電漿, | zh_TW |
dc.subject.keyword | OER,water electrolysis,electrocatalysts,Metal Organic Frameworks (MOF),low-pressure plasma, | en |
dc.relation.page | 89 | - |
dc.identifier.doi | 10.6342/NTU202401837 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-18 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。