Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93191
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江簡富zh_TW
dc.contributor.advisorJean-Fu Kiangen
dc.contributor.author莊旭岳zh_TW
dc.contributor.authorHsu-Yueh Chuangen
dc.date.accessioned2024-07-23T16:13:03Z-
dc.date.available2024-07-24-
dc.date.copyright2024-07-23-
dc.date.issued2024-
dc.date.submitted2024-07-18-
dc.identifier.citation[1] M. Tello, V. C. Bes, M. Pardini and K. Papathanassiou, “Forest structure characterization from SAR tomography at L-band,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing, vol. 11, no. 10 pp. 3402-34, Oct. 2018.
[2] F. Lombardini and M. Pardini, “3-D SAR tomography: The multibaseline sector interpolation approach,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 630-634, Oct. 2008.
[3] N. Ramachandran, S. Saatchi, S. Tebaldini, M. M. dAlessandro and O. Dikshit, “Evaluation of P-band SAR tomography for mapping tropical forest vertical backscatter and tree height,” Remote Sensing, vol. 13, no. 8, pp. 1485-1506, Apr. 2021.
[4] S. Jia, S. H. Kim, S. V. Nghiem and M. Kafatos, “Estimating live fuel moisture using SMAP L-band radiometer soil moisture for Southern California, USA,” Remote Sensing, vol. 11, no. 13, pp. 1575, Jul. 2019.
[5] T. Log, “Modeling drying of degenerated Calluna vulgaris for wildfire and prescribed burning risk assessment,” Forests, vol. 11, no. 7, pp. 759, Jul. 2020.
[6] K. Rao, P. Williams, J. F. Flefil, A. G. Konings, “SAR-enhanced mapping of live fuel moisture content,” Remote Sensing of Environment, vol. 245, pp. 111797, May. 2020.
[7] M. Salim, S. Tan, R. D. D. Roo, A. Colliander and K. Sarabandi, “Passive and active multiple scattering of forests using radiative transfer theory with an iterative approach and cyclical corrections,” IEEE Trans. Geosci. Remote Sensing, vol. 60, pp. 1-16, Jun. 2021.
[8] N. Marchi, F. Pirotti and E. Lingua, “Airborne and terrestrial laser scanning data for the assessment of standing and lying deadwood: Current situation and new perspectives,” Remote Sensing, vol. 10, no. 9, pp. 1356, Aug. 2018.
[9] Y.-X. Li, X.-W. Quan, Z.-M. Liao and B.-B. He, “Estimating live fuel moisture using SMAP L-band radiometer soil moisture for Southern California, USA,” Remote Sensing, vol. 13, no. 6, pp. 1189, Mar. 2021.
[10] P. Pasquali, C. Prati, F. Rocca, M. Seymour, J. Fortuny, E. Ohlmer and A.J. Sieber, “A 3-D SAR experiment with EMSL data,” IEEE Geosci. Remote Sensing Symp., Jul. 1995.
[11] X. Liu, L. Zhang, X.-W. Yang, M.-S. Liao and W. Li, “Retrieval of tropical forest height and above ground biomass using airborne P- and L-band SAR tomography,” IEEE Geosci. Remote Sensing Lett., vol. 19, 4012405, Apr. 2021, doi: 10.1109/LGRS.2021.3069371.
[12] S. Tebaldini and F. Rocca, “Multibaseline polarimetric SAR tomography of a boreal forest at P- and L-Bands, IEEE Trans. Geosci. Remote Sensing, vol. 50, no. 1, pp. 232-246, Jan. 2012.
[13] I. E. Moussawi, D. H. T. Minh, N. Baghdadi, C. Abdallah, J. Jomaah, O. Strauss, M. Lavalle and Y.-N. Ngo, “Monitoring tropical forest structure using SAR tomography at L- and P-band,” Remote Sensing, vol. 11, no. 16, pp. 1934-1951, Aug. 2019.
[14] V. C. Bes, M. Pardini, M. Tello and K. P. Papathanassiou, “Comparison of tomographic SAR reflectivity reconstruction algorithms for forest applications at L-band,” IEEE Trans. Geosci. Remote Sensing, vol. 58, no. 1, pp. 147-164, Jan. 2020, doi: 10.1109/TGRS.2019.2934347.
[15] M. Nannini, R. Scheiber and A. Moreira,, “Estimation of the minimum number of tracks for SAR tomography,” IEEE Trans. Geosci. Remote Sensing, vol. 47, no. 2, pp. 531-543, Feb. 2009.
[16] V. C. Bes, M. Pardini and K. Papathanassiou, “Definition of tomographic SAR configurations for forest structure applications at L-band,” IEEE Geosci. Remote Sensing Lett., vol. 19, no. 4002605, 2022, doi: 10.1109/LGRS.2020.3027439.
[17] R. Bamler and P. Hartl, “Synthetic aperture radar interferometry,” Inverse problems, vol. 14, no. 4, 1998.
[18] X. Peng, X.-W. Li, Y. Du and Q.-H. Xie, “Forest height estimation from a robust TomoSAR method in the case of small tomographic aperture with airborne dataset at L-band,” Remote Sensing, vol. 13, no. 11, pp. 2147-2163, May 2021, doi: https://doi.org/10.3390/rs13112147.
[19] A. Reigber and A. Moreira “First demonstration of airborne SAR tomography using multibaseline L-band data,” IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 5, pp. 2142-2152, Sep. 2000, doi: 10.1109/36.868873.
[20] G. Fornaro, F. Lombardini and F. Serafino, “Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data,” IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 4, pp. 702-714, Apr. 2005, doi: 10.1109/TGRS.2005.843567.
[21] G. Xu, B. Zhang, H. Yu, J. Chen, M. Xing and W. Hong, “Sparse synthetic aperture radar imaging from compressed sensing and machine learning: Theories, applications, and trends,” IEEE Geosci. Remote Sensing Mag., vol. 10, no. 4, pp. 32-69, Dec. 2022, doi: 10.1109/MGRS.2022.3218801.
[22] Z.-Q. Xu, B.-C. Zhang, Z. Zhang, M.-Z. Wang, Y.-R. Wu, “Nonconvex-nonlocal total variation regularization-based joint feature-enhanced sparse SAR imaging,” IEEE Geosci. Remote Sensing Lett., vol.19, pp.1-5, 2022.
[23] H. Bi, X. Lu, Y. Yin, W. Yang and D. Zhu, “Sparse SAR imaging based on periodic block sampling data,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1V12, 2022.
[24] M.-S. Kang and J.-M. Baek, “SAR image reconstruction via incremental imaging with compressive sensing,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 4, pp. 4450-4463, Aug. 2023.
[25] G. Xu, X. -G. Xia and W. Hong, “Nonambiguous SAR image formation of maritime targets using weighted sparse approach,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 3, pp: 1454V1465, 2018.
[26] M. M. d’Alessandro and S. Tebaldini, “Phenomenology of P-band scattering from a tropical forest through three-dimensional SAR tomography,” IEEE Geosci. Remote Sensing Lett., vol. 9, no. 3, pp. 442-446, May 2012.
[27] W. Diestel, “Arbaro-tree generation for povray”, 2003. https://arbaro.sourceforge.net/
[28] Onyx Computing, “OnyxTree modelling software for vegetation,” 2020. Available online: www.onyxtree.com (accessed on 12 Feb. 2021).
[29] S. Griffon and F. D. Coligny, “AMAPstudio: An editing and simulation software suite for plants architecture modelling,” Ecol. Model., vol. 290, pp. 3V10. Oct. 2014.
[30] H. Weiser, L. Winiwarter, K. Anders, F. E. Fassnacht and B. Hofle, “Opaque voxelbased tree models for virtual laser scanning in forestry applications,” Remote Sensing of Environment, vol. 265, pp. 112641, Nov. 2021.
[31] D.-H. Liao and T. Dogaru, “Full-wave scattering and imaging characterization of realistic trees for FOPEN sensing,” IEEE Geosci. Remote Sensing Lett., vol. 13, no. 7, pp. 957-961, Jul. 2016.
[32] T. Zeng, C. Hu, H.-W. Sun and E.-X Chen, “A novel rapid SAR simulator based on equivalent scatterers for three-dimensional forest canopies,” IEEE Trans. Geosci. Remote Sensing, vol. 52, no. 9, pp. 5243-5255, Sep. 2014.
[33] H.-Y. Yu and Z.-J. Zhang, “The Performance of relative height metrics for estimation of forest above-ground biomass using L- and X-bands tomosar data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sensing, vol. 14, no. 1, pp. 1857-1871, Jan. 2021.
[34] M. Engel, A. Heinzel, E. Schreiber, S. Dill and M. Peichl, “Recent results of a UAVbased synthetic aperture radar for remote sensing applications,” Euro. Conf. Synthetic Aperture Radar, Jul. 2021.
[35] G. Ludeno, I. Catapano, A. Renga, A. R. Vetrella, G. Fasano, F. Soldovieri, “Assessment of a micro-UAV system for microwave tomography radar imaging,” Remote Sensing of Environment, vol. 212, no. 9, pp. 90-102, Apr. 2018
[36] M. Gilman and S. Tsynkov, “A mathematical model for SAR imaging beyond the first Born approximation,” SIAM J. Imaging Sci. vol. 8, no. 1, pp. 186-225, Jan. 2015.
[37] G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing, CRC press, 2018.
[38] J. O. Hagberg, L. M. H. Ulander and J. Askne, “Repeat-pass SAR interferometry over forested terrain,” IEEE Trans. Geosci. Remote Sensing, vol. 33, no. 2, pp. 331-340, Mar. 1995.
[39] F. Gini, F, Lombardini and M. Montanari, “Layover solution in multibaseline SAR interferometry,” IEEE Trans. Aerospace Electro. Syst., vol. 38, no. 4, pp. 1344-1356, Oct. 2002.
[40] M. Schmitt, J. L. Schonberger and U. Stilla, “Adaptive covariance matrix estimation for multi-baseline InSAR data stacks,” IEEE Trans. Geosci. Remote Sensing, vol. 52, no. 11, pp. 6807-6817, Nov. 2014.
[41] B. Zhang, G. Xu, H. Yu, H. Wang, H. Pei and W. Hong, “Array 3-D SAR tomography using robust gridless compressed sensing,” IEEE Trans. Geosci. Remote Sensing, vol. 61, 2023, 5205013, doi: 10.1109/TGRS.2023.3259980.
[42] X.-X. Zhu and R. Bamler, “Tomographic SAR inversion by L1 norm regularization-the compressive sensing approach,” IEEE Trans. Geosci. Remote Sensing, vol. 48, no. 10, pp. 3839-3846, Oct. 2010.
[43] G. O. Glentis, “A fast algorithm for APES and Capon spectral estimation,” IEEE Trans. Signal Processing, vol. 56, no. 9, pp. 4207-4220, Sep. 2008.
[44] J. Svedin, A. Bernland, A. Gustafsson, E. Claar and J. Luong, “Small UAV-based SAR system using low-cost radar, position, and attitude sensors with onboard imaging capability,” Int. J. Microwave Wireless Technol., vol. 13, no. 6, pp. 602-613, Mar. 2021.
[45] Z.-X. Lv, X.-L. Qiu, Y. Cheng, S. Shangguan, F.-F. Li and C.-B. Ding, “Multi-rotor UAV-borne polinsar data processing and preliminary analysis of height inversion in urban area,” Remote Sensing, vol. 14, no. 9, pp. 2161, Apr. 2022.
[46] Z. G. Ding, L. H. Li, Y. Wang, T. Y. Zhang, W. B. Gao, K. W. Zhu, T. Zeng and D. Yao, “An autofocus approach for UAV-based ultrawideband ultrawidebeam SAR data with frequency-dependent and 2-D space-variant motion errors,” IEEE Trans. Geosci. Remote Sensing, vol. 60, Mar. 2021.
[47] M. Patrick, “Binvox 3D mesh voxelizer,” http://www.cs.princeton.edu/min/binvox, 2004.
[48] G. M. Daniel, “CloudCompare,” France: EDF R&D Telecom ParisTech., vol. 11, 2016.
[49] W. Mucke, B. Deak, A. Schroiff, M. Hollaus and N. Pfeifer, “Detection of fallen trees in forested areas using small footprint airborne laser scanning data,” Canadian J. Remote Sensing, vol. 39, no. sup1, pp. S32-S40, Jun. 2013.
[50] F. T. Ulaby and M. A. El-rayes, “ Microwave dielectric spectrum of vegetation-Part II: Dual-dispersion model,” IEEE Trans. Geosci. Remote Sensing, vol. 25, no. 5, pp. 550-557, Sep. 1987.
[51] S. Glass and S. Zelinka, “Moisture relations and physical properties of wood,” in Wood Handbook: Wood as an Engineering Material, Tech. Rep. FPL-GTR-282, Ch.4, Forest Products Laboratory (FPL), Mar. 2021.
[52] A. Paletto and V. Tosi, “Deadwood density variation with decay class in seven tree species of the Italian Alps,” Scandinavian J. Forest Research, vol. 25, no. 2, pp. 164-173, Feb. 2010.
[53] F. T. Ulaby, M. Razani and M. C. Dobson, “Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture,” IEEE Trans. Geosci. Remote Sensing, vol. 21, no. 1, pp. 51-61, Jan. 1983.
[54] M. Schwank, A. Kontu, A. Mialon, R. Naderpour, D. Houtz, J. Lemmetyinen, K. Rautiainen, Q.-H. Li, P. Richaume, Y. Kerr and C. Matzler, “Temperature effects on L-band vegetation optical depth of a boreal forest,” Remote Sensing of Environment, vol. 263, pp. 112542, May 2021.
[55] P. Liang, L. E. Pierce and M. Moghaddam, “Radiative transfer model for microwave bistatic scattering from forest canopies,” IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 11, pp. 2470-2483, Nov. 2005.
[56] F. T. Ulaby, K. Sarabandi, K. Mcdonald, M. Whitt and M. C. Dobson, “Michigan microwave canopy scattering model,” Int. J. Remote Sensing, vol. 11, no. 7, pp. 1223-1253, Nov. 1990.
[57] D. R. A. D. Almeida, S. C. Stark, C. A. Silva, C. Hamamura and R. Valbuena, “leafR: Calculates the leaf area index (LAD) and other related functions,” CRAN, Available on: https://cran. r-project. org/web/packages/leafR/index. html, 2019.
[58] https://en.wikipedia.org/wiki/Tamarack Fire
[59] C. E. Kay and D. L. Bartos, “Ungulate herbivory on Utah aspen: Assessment of longterm exclosures,” Rangeland Ecology & Management/J. Range Management Archives, vol. 53, no. 2, pp. 145-153, Mar. 2000.
[60] H.-F. Shen, C.-X. Zhou, J. Li, and Q.-Q. Yuan, “SAR image despeckling employing a recursive deep CNN prior,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 1, pp. 273-286, Jan. 2021.
[61] “Root-mean-square deviation,” https://en.wikipedia.org/wiki/Root-mean-square
deviation, Accessed: 05 July 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93191-
dc.description.abstract本論文提出了嚴格的層析合成孔徑雷達 (TomoSAR) 成像程序來獲取局部感興趣區域森林的高解析度 L 波段影像。推導出一聚焦函數 (Focusing function) 以將散射訊號與森林冠層的反射率函數相關聯,從而無需借助校準。使用森林體素模型來模擬不同的樹種,並使用 Maxwell-Garnett mixing formula 對介電常數進行建模。在模擬中,在三種信噪比下的兩種森林場景中應用了五種不同的反演方法,以驗證所提出程序的有效性。樹木的介電常數曲線可用來監測森林的含水量。結果顯示使用一群無人機 (UAV) 在特定區域進行 TomoSAR 成像以找出潛在的野火危險點是可行的。zh_TW
dc.description.abstractA rigorous TomoSAR imaging procedure is proposed to acquire high-resolution L-band images of a forest in a local area of interest. A focusing function is derived to relate the backscattered signals to the reflectivity function of the forest canopies without resorting to calibration. A forest voxel model is compiled to simulate different tree species, with the dielectric constant modeled with the Maxwell-Garnett mixing formula. Five different inverse methods are applied on two forest scenarios under three signal-to-noise ratios in the simulations to validate the efficacy of the proposed procedure. The dielectric-constant profile of trees can be used to monitor the moisture content of the forest. The use of a swarm of unmanned aerial vehicles (UAVs) is feasible to carry out TomoSAR imaging over a specific area to pinpoint potential spots of wildfire hazards.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:13:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-23T16:13:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
口試委員審定書 i
Acknowledgment ii
中文摘要 iii
Abstract iv
Table of Contents vi
List of Figures ix
List of Tables x
1 Introduction 1
2 Forward Problem and Signal Model 6
2.1 Range Compression 8
2.2 Azimuth-Depth Compression 8
3 TomoSAR Imaging Methods 12
3.1 Covariance of Deramped Images 15
3.2 Compressive-Sensing Method 18
3.3 Fourier Beamforming (FB) Method 19
3.4 Multiple Signal Classification (MUSIC) Method 20
3.5 Amplitude and Phase Estimation (APES) Method 21
3.6 Capon Method 23
4 Simulations and Discussion 24
4.1 Parameters for TomoSAR Simulations 25
4.2 Simulations on Virtual Forest 28
4.3 Effects of Noise 33
4.4 Performance Comparison of Imaging Methods 35
4.5 Highlighted Contributions 37
5 Conclusions 51
Bibliography 53
-
dc.language.isoen-
dc.subject層析合成孔徑雷達zh_TW
dc.subject合成孔徑雷達zh_TW
dc.subjectL波段zh_TW
dc.subject野火預防zh_TW
dc.subject無人機zh_TW
dc.subject介電系數zh_TW
dc.subject森林模型zh_TW
dc.subjectfocusing functionen
dc.subjectunmanned aerial vehicleen
dc.subjectreflectivity functionen
dc.subjectdielectric constanten
dc.subjectforest modelen
dc.subjectL-banden
dc.subjectTomoSARen
dc.subjecthigh resolutionen
dc.subjectwildfire predictionen
dc.title採用無人機群執行高解析度 L 波段層析合成孔徑雷達成像以檢測森林冠層介電常數異常zh_TW
dc.titleHigh-Resolution L-Band TomoSAR Imaging on Forest Canopies with UAV Swarm to Detect Dielectric Constant Anomalyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee丁建均;李翔傑zh_TW
dc.contributor.oralexamcommitteeJian-Jiun Ding;Hsiang-Chieh Leeen
dc.subject.keyword合成孔徑雷達,層析合成孔徑雷達,森林模型,介電系數,無人機,野火預防,L波段,zh_TW
dc.subject.keywordTomoSAR,high resolution,L-band,focusing function,forest model,dielectric constant,reflectivity function,unmanned aerial vehicle,wildfire prediction,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202401897-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved