Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93170Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 覺文郁 | zh_TW |
| dc.contributor.advisor | Wen-Yuh Jywe | en |
| dc.contributor.author | 林昱全 | zh_TW |
| dc.contributor.author | YU-QUAN LIN | en |
| dc.date.accessioned | 2024-07-22T16:11:33Z | - |
| dc.date.available | 2024-07-23 | - |
| dc.date.copyright | 2024-07-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-17 | - |
| dc.identifier.citation | 1. Tracker.., N.-Z. Net-Zero Tracker. 2024 [cited 2024-03-01; Available from: https://www.climatewatchdata.org/net-zero-tracker.
2. 姚克昌 and 張瑋壬. 工具機與零組件雜誌. 綠色製造 [cited 2024 2024-03-05]; Available from: https://www.maonline.com.tw/article_inside.php?i=775. 3. 林呈欣. 碳管理系統初探 – 工研院永續碳管理平台. 2023-11-08 [cited 2024; Available from: https://www.cio.com.tw/carbon-management-system-began-itri-sustainable-carbon-management-platform/. 4. 陳念舜. 綠色工具機盼再增產業競爭力. [cited 2024 2024-03-12]; Available from: https://www.tairoa.org.tw/column/bnGenerator.aspx?Language=zh-TW&CategoryId=1&ColumnId=11378. 5. 百德新聞. [cited 2024 2024-06-25]; Available from: https://www.quaser.com/tw/news/detail-417. 6. Behrendt, T., A. Zein, and S. Min, Development of an energy consumption monitoring procedure for machine tools. CIRP Annals, 2012. 61(1): p. 43-46. 7. Hu, S., et al., An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 2012. 27: p. 133-140. 8. Huang, J., F. Liu, and J. Xie, A method for determining the energy consumption of machine tools in the spindle start-up process before machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016. 230(9): p. 1639-1649. 9. Zhou, L., et al., Energy consumption model and energy efficiency of machine tools: a comprehensive literature review. Journal of Cleaner Production, 2016. 112: p. 3721-3734. 10. Edem, I.F. and P.T. Mativenga, Modelling of energy demand from computer numerical control (CNC) toolpaths. Journal of Cleaner Production, 2017. 157: p. 310-321. 11. Shin, S.-J., J. Woo, and S. Rachuri, Energy efficiency of milling machining: Component modeling and online optimization of cutting parameters. Journal of Cleaner Production, 2017. 161: p. 12-29. 12. Wang, Z., Optimization calculation of reverse energy consumption based on feature parameter of NC code. The International Journal of Advanced Manufacturing Technology, 2017. 93(9-12): p. 3437-3448. 13. Tuo, J., et al., Energy efficiency evaluation for machining systems through virtual part. Energy, 2018. 159: p. 172-183. 14. Lv, L., et al., Modelling and analysis for processing energy consumption of mechanism and data integrated machine tool. International Journal of Production Research, 2020. 58(23): p. 7078-7093. 15. Zhao, G., et al., Specific energy consumption prediction model of CNC machine tools based on tool wear. International Journal of Computer Integrated Manufacturing, 2020. 33(2): p. 159-168. 16. Brillinger, M., et al., Energy prediction for CNC machining with machine learning. CIRP Journal of Manufacturing Science and Technology, 2021. 35: p. 715-723. 17. Cao, J., et al., A Novel CNC Milling Energy Consumption Prediction Method Based on Program Parsing and Parallel Neural Network. Sustainability, 2021. 13(24). 18. Zhou, L., et al., A new empirical standby power and auxiliary power model of CNC machine tools. The International Journal of Advanced Manufacturing Technology, 2022. 120(5-6): p. 3995-4010. 19. Feng, C., et al., Energy consumption optimisation for machining processes based on numerical control programs. Advanced Engineering Informatics, 2023. 57. 20. Xie, Y., et al., A Method for Identifying Energy Consumption of Machine. 2023. 21. Panasonic. 2024 [cited 2024 2024-07-09]; Available from: https://pmst.panasonic.com.tw/Air/PSPCcalc_air_condition_capa.aspx. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93170 | - |
| dc.description.abstract | 本研究探討了CNC銑床工具機加工過程中的加工時間和能耗預測,並提出了相應的預測模型。研究通過解析NC code,建立了能有效預測加工時間和能耗的數學算法和基於XGBoost的能耗預測模型。通過時間預測模型的結果顯示,在不考慮更換刀把的情況下,考慮加速度與急跳速度對加工時間的預測具有重要意義。在不考慮加速度與急跳速度的情況下,理論計算時間與實際時間的誤差為-1.28%;只考慮加速度時,誤差縮小至-1.08%;而同時考慮加速度與急跳速度時,理論計算時間與實際時間的誤差僅為0.08%。故結果表明考慮機台的加速度和急跳速度可以顯著提高加工時間預測的準確性。能耗預測模型在大多數情況下具有較高的準確性,誤差均在1%以內,但在虎科本校區因輸入特徵較少導致誤差約為3%。總結來說,本研究強調了NC程式碼解析在提升時間和能耗預測準確性方面的價值。未來,本研究可與大型語言模型(LLM)結合,擴大應用範圍,包括檢查NC code編成錯誤、預估加工時間以及閱讀2D/3D圖檔進行自動報價系統評估。這些應用將進一步提升CNC銑床工具機加工過程的效率和準確性,並促進生產管理和能耗管理的改進。 | zh_TW |
| dc.description.abstract | This study investigates the prediction of machining time and energy consumption in CNC machine tool processes and proposes corresponding prediction models. By analyzing NC code, mathematical algorithms and an XGBoost-based energy consumption prediction model were established to effectively predict machining time and energy consumption. The results of the time prediction model show that considering acceleration and jerk is significant for predicting machining time. Without considering acceleration and jerk, the error between theoretical and actual time is -1.28%; when only considering acceleration, the error is reduced to -1.08%; and when both acceleration and jerk are considered, the error between theoretical and actual time is only 0.08%. Therefore, the results indicate that considering the machine tool's acceleration and jerk can significantly improve the accuracy of machining time prediction. The energy consumption prediction model demonstrates high accuracy in most cases, with errors within 1%, but at the NFU Campus, the error is about 3% due to fewer input features. In summary, this study highlights the value of NC code analysis in improving the accuracy of time and energy consumption predictions. In the future, this research can be integrated with Large Language Models (LLM) to expand its application scope, including checking NC code for errors, estimating machining time, and evaluating automatic quotation systems from 2D/3D drawings. These applications will further enhance the efficiency and accuracy of CNC machine tool processes, promoting improvements in production management and energy consumption management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-22T16:11:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-22T16:11:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii ABSTRACT iv 目次 v 圖次 viii 表次 xii 第一章 緒論 1 1.1研究背景 1 1.1.1 減碳法規與各國目標 1 1.1.2 產業對應方法 1 1.2文獻回顧 4 1.3研究動機與目的 6 1.4研究架構 7 第二章 研究系統架構 8 2.1工具機功率與能耗 8 2.2機器學習預測工具機之功率曲線圖 11 2.3 NC code 擷取特徵與計算時間 12 第三章 研究方法 24 3.1 實驗方式 24 3.2 機器學習 27 3.3 機台搬遷前後功率與能耗之比較 28 第四章 實驗結構與結果討論 32 4.1 實驗設備介紹 32 4.2實驗規劃 36 4.3時間模型建構 42 4.4時間模型 API串聯ChatGPT 45 4.5資料收集 48 4.6特徵擷取 49 4.7前處理 54 4.8建立能耗預測模型 56 4.8.1資料蒐集與處理 56 4.8.2特徵選擇與編碼 56 4.8.3模型訓練與調參 56 4.8.4模型評估 57 4.8.5能耗預測結果 57 4.9 重新訓練模型—預測不同環境機台能耗 59 第五章 結論 67 第六章 未來展望 69 6.1利用LLM檢查NC code編成錯誤 69 6.2利用LLM預估加工時間 70 6.3利用LLM閱讀2D/3D圖檔,自動報價系統評估 71 參考文獻 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 時間預測模型 | zh_TW |
| dc.subject | NC code | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 能耗預測模型 | zh_TW |
| dc.subject | Energy Consumption Model | en |
| dc.subject | Machine Learning | en |
| dc.subject | Time Model | en |
| dc.subject | NC code | en |
| dc.title | NC code預測加工過程能耗 | zh_TW |
| dc.title | Predicting Energy Consumption in the Machining Process Using NC Code | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝東賢;潘明憲;熊仕傑 | zh_TW |
| dc.contributor.oralexamcommittee | Dong-Xian Xie;Ming-Xian Pan;Shi-Jie Xiong | en |
| dc.subject.keyword | NC code,時間預測模型,能耗預測模型,機器學習, | zh_TW |
| dc.subject.keyword | NC code,Time Model,Energy Consumption Model,Machine Learning, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202401883 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 4.05 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
