請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93168
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭修伯 | zh_TW |
dc.contributor.advisor | Hsiu-Po Kuo | en |
dc.contributor.author | 郭永吉 | zh_TW |
dc.contributor.author | Papon Kumponkanjana | en |
dc.date.accessioned | 2024-07-22T16:10:57Z | - |
dc.date.available | 2024-07-23 | - |
dc.date.copyright | 2024-07-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-17 | - |
dc.identifier.citation | 1. Zhang, J., Wang, Z., Ding, D., & Han, Y. (2023). Evolution and Application of Biofuels. Journal of Energy Bioscience. https://doi.org/10.5376/jeb.2023.14.0001
2. Alfasane, A., Akhtar, A., Lopa, N. S., & Rahman, M. (2023). Introduction to Biomass. In Biomass‐Based Supercapacitors (pp. 1-21). https://doi.org/https://doi.org/10.1002/9781119866435.ch1 3. Nugroho Adi Sasongko, N. G. P., Maya Larasati Donna Wardani. (2023). Review of types of biomass as a fuel-combustion feedstock and their characteristics. Advances in Food Science, Sustainable Agriculture, and Agroindustrial Engineering, 6, 170-184. http://dx.doi.org/10.21776/ub.afssaae.2023.006.02.8 4. Barot, S. (2022). Biomass and Bioenergy: Resources, Conversion and Application. In Renewable Energy for Sustainable Growth Assessment (pp. 243-262). https://doi.org/https://doi.org/10.1002/9781119785460.ch9 5. Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357-1378. https://doi.org/https://doi.org/10.1016/S0196-8904(00)00137-0 6. Zhang, X. (2016). Essential scientific mapping of the value chain of thermochemically converted second-generation bio-fuels. Green chemistry, 18(19), 5086-5117. 7. Norouzi, O., Taghavi, S., Arku, P., Jafarian, S., Signoretto, M., & Dutta, A. (2021). What is the best catalyst for biomass pyrolysis? Journal of Analytical and Applied Pyrolysis, 158. https://doi.org/10.1016/j.jaap.2021.105280 8. Aro, E.-M. (2016). From first generation biofuels to advanced solar biofuels. Ambio, 45(Suppl 1), 24-31. 9. Demirbas, A. (2009). Thermochemical conversion processes. Biofuels: Securing the Planet’s Future Energy Needs, 261-304. 10. Leibbrandt, N., Knoetze, J., & Görgens, J. (2011). Comparing biological and thermochemical processing of sugarcane bagasse: an energy balance perspective. Biomass and bioenergy, 35(5), 2117-2126. 11. Hopwood, L. (2009). Anaerobic digestion. https://www.stem.org.uk/resources/elibrary/resource/29502/anaerobic-digestion 12. Liu, C., Wang, H., Karim, A. M., Sun, J., & Wang, Y. (2014). Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews, 43(22), 7594-7623. 13. Chen, W.-H., & Kuo, P.-C. (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35(6), 2580-2586. 14. Janicka, J., Sadiki, A., Schäfer, M., & Heeger, C. (2012). Flow and combustion in advanced gas turbine combustors (Vol. 102). Springer Science & Business Media. 15. Verma, M., Godbout, S., Brar, S. K., Solomatnikova, O., Lemay, S. P., & Larouche, J. P. (2012). Biofuels Production from Biomass by Thermochemical Conversion Technologies. International Journal of Chemical Engineering, 2012, 542426. https://doi.org/10.1155/2012/542426 16. Zhang, J., & Zhang, X. (2019). The thermochemical conversion of biomass into biofuels. In Biomass, Biopolymer-Based Materials, and Bioenergy (pp. 327-368). https://doi.org/10.1016/b978-0-08-102426-3.00015-1 17. Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press. 18. Czernik, S., & Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 18(2), 590-598. 19. Demirbas, A., & Arin, G. (2002). An overview of biomass pyrolysis. Energy sources, 24(5), 471-482. 20. Fahmi, R., Bridgwater, A. V., Donnison, I., Yates, N., & Jones, J. (2008). The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel, 87(7), 1230-1240. 21. Demirbas, A. (2007). Production of gasoline and diesel fuels from bio-materials. Energy Sources, Part A, 29(8), 753-760. 22. Demirbaş, A. (2000). Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management, 41(6), 633-646. 23. Al Arni, S., Bosio, B., & Arato, E. (2010). Syngas from sugarcane pyrolysis: An experimental study for fuel cell applications. Renewable Energy, 35(1), 29-35. 24. Diebold, J. P., & Bridgwater, A. V. (1997). Overview of Fast Pyrolysis of Biomass for the Production of Liquid Fuels. In A. V. Bridgwater & D. G. B. Boocock (Eds.), Developments in Thermochemical Biomass Conversion: Volume 1 / Volume 2 (pp. 5-23). Springer Netherlands. https://doi.org/10.1007/978-94-009-1559-6_1 25. Piskorz, J., Scott, D., & Radlein, D. (1988). Composition of oils obtained by fast pyrolysis of different woods. In. ACS Publications. 26. Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management, 50(12), 3147-3157. 27. AV, B. (2001). An overview of fast pyrolysis. Progress in thermochemical biomass conversion, 977-997. 28. Hilal DemirbaŞ, A. (2005). Yields and heating values of liquids and chars from spruce trunkbark pyrolysis. Energy sources, 27(14), 1367-1373. 29. Brammer, J., Lauer, M., & Bridgwater, A. (2006). Opportunities for biomass-derived “bio-oil” in European heat and power markets. Energy policy, 34(17), 2871-2880. 30. Aguado, R., Olazar, M., Gaisán, B., Prieto, R., & Bilbao, J. (2002). Kinetic study of polyolefin pyrolysis in a conical spouted bed reactor. Industrial & engineering chemistry research, 41(18), 4559-4566. 31. Cornelissen, T., Yperman, J., Reggers, G., Schreurs, S., & Carleer, R. (2008). Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value. Fuel, 87(7), 1031-1041. 32. Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., & Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232-242. 33. McGrath, T. E., Chan, W. G., & Hajaligol, M. R. (2003). Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 66(1-2), 51-70. 34. Mamleev, V., Bourbigot, S., Le Bras, M., & Yvon, J. (2009). The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: Interdependence of the steps. Journal of Analytical and Applied Pyrolysis, 84(1), 1-17. 35. Collard, F.-X., & Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594-608. https://doi.org/10.1016/j.rser.2014.06.013 36. Morf, P., Hasler, P., & Nussbaumer, T. (2002). Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel, 81(7), 843-853. 37. Tawaf Ali, S., Li, Z., Li, Z., & Zhang, A. (2022). Composition and Role of Lignin in Biochemicals. In S. Arpit & T. Jaya (Eds.), Lignin (pp. Ch. 2). IntechOpen. https://doi.org/10.5772/intechopen.106527 38. Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, J. M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies [10.1039/B810100K]. Energy & Environmental Science, 1(1), 32-65. https://doi.org/10.1039/B810100K 39. Jahirul, M., Rasul, M., Chowdhury, A., & Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis —A Technological Review. Energies, 5(12), 4952-5001. https://doi.org/10.3390/en5124952 40. Mohan, D., Pittman Jr, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20(3), 848-889. 41. Lin, H.-T. (2022). The effect of the fluidized bed operation parameters on the heat transfer characteristics and the product distribution of rice husk pyrolysis National Taiwan University]. 42. Freitas, A. C., & Guirardello, R. (2015). Use of CO2 as a co-reactant to promote syngas production in supercritical water gasification of sugarcane bagasse. Journal of CO2 Utilization, 9, 66-73. 43. Zhang, H., Xiao, R., Wang, D., He, G., Shao, S., Zhang, J., & Zhong, Z. (2011). Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Bioresour Technol, 102(5), 4258-4264. https://doi.org/10.1016/j.biortech.2010.12.075 44. Guizani, C., Escudero Sanz, F. J., & Salvador, S. (2014). Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel, 116, 310-320. https://doi.org/10.1016/j.fuel.2013.07.101 45. Xu, D., Lin, J., Ma, R., Fang, L., Sun, S., & Luo, J. (2022). Microwave pyrolysis of biomass for low-oxygen bio-oil: Mechanisms of CO2-assisted in-situ deoxygenation. Renewable Energy, 184, 124-133. https://doi.org/10.1016/j.renene.2021.11.069 46. Maguyon, M. C. C., & Capareda, S. C. (2013). Evaluating the effects of temperature on pressurized pyrolysis of Nannochloropsis oculata based on products yields and characteristics. Energy Conversion and Management, 76, 764-773. 47. Corma, A. (1985). The Chemistry of Catalytic Cracking [Article]. Catalysis Reviews, 27(1), 29-150. https://doi.org/10.1080/01614948509342358 48. Chen, N. Y., Degnan Jr, T. F., & Koenig, L. R. (1986). LIQUID FUEL FROM CARBOHYDRATES [Article]. CHEMTECH, 16(8), 506-511. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022768547&partnerID=40&md5=13719e8386b0fad52dc580675a440c05 49. Mante, O. D., Agblevor, F. A., & McClung, R. (2013). A study on catalytic pyrolysis of biomass with Y-zeolite based FCC catalyst using response surface methodology. Fuel, 108, 451-464. https://doi.org/10.1016/j.fuel.2012.12.027 50. Zhang, H., Xiao, R., Wang, D., Zhong, Z., Song, M., Pan, Q., & He, G. (2009). Catalytic Fast Pyrolysis of Biomass in a Fluidized Bed with Fresh and Spent Fluidized Catalytic Cracking (FCC) Catalysts. Energy & Fuels, 23(12), 6199-6206. https://doi.org/10.1021/ef900720m 51. Corma, A., Huber, G., Sauvanaud, L., & Oconnor, P. (2007). Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. Journal of Catalysis, 247(2), 307-327. https://doi.org/10.1016/j.jcat.2007.01.023 52. Fu, W., Bai, X., Tursun, Y., Liu, Q., Li, B., Dai, Z., Zhao, Y., Li, X., Guo, L., & Li, J. (2023). Oxidative pyrolysis of plywood waste: Effect of oxygen concentration and other parameters on product yield and composition. Journal of Analytical and Applied Pyrolysis, 173. https://doi.org/10.1016/j.jaap.2023.106068 53. Li, B., Song, M., Xie, X., Wei, J., Xu, D., Ding, K., Huang, Y., Zhang, S., Hu, X., Zhang, S., & Liu, D. (2023). Oxidative fast pyrolysis of biomass in a quartz tube fluidized bed reactor: Effect of oxygen equivalence ratio. Energy, 270. https://doi.org/10.1016/j.energy.2023.126987 54. Senneca, O., Chirone, R., & Salatino, P. (2002). A thermogravimetric study of nonfossil solid fuels. 2. Oxidative pyrolysis and char combustion. Energy & Fuels, 16(3), 661-668. 55. Senneca, O., Chirone, R., & Salatino, P. (2004). Oxidative pyrolysis of solid fuels. Journal of Analytical and Applied Pyrolysis, 71(2), 959-970. 56. Chen, Y., Duan, J., & Luo, Y.-h. (2008). Investigation of agricultural residues pyrolysis behavior under inert and oxidative conditions. Journal of Analytical and Applied Pyrolysis, 83(2), 165-174. 57. Cai, J., & Alimujiang, S. (2009). Kinetic analysis of wheat straw oxidative pyrolysis using thermogravimetric analysis: statistical description and isoconversional kinetic analysis. Industrial & engineering chemistry research, 48(2), 619-624. 58. 農業部. (2020). 農業統計年報(111年). https://agrstat.moa.gov.tw/sdweb/public/book/Book.aspx 59. 郭茂穗. (2003). 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究 [Preparation of Rice Husk Ash-Alumina Supported Nickel Catalysts by Different Methods] [博士論文 [Doctoral dissertation], 國立中央大學 [National Central University], 臺灣博碩士論文知識加值系統 [Taiwan Electronic Theses and Dissertations System]]. https://hdl.handle.net/11296/rg6d9g 60. Wypych, G. (1999). Handbook of fillers. 61. Wang, G., Dai, Y., Yang, H., Xiong, Q., Wang, K., Zhou, J., Li, Y., & Wang, S. (2020). A Review of Recent Advances in Biomass Pyrolysis. Energy & Fuels, 34(12), 15557-15578. https://doi.org/10.1021/acs.energyfuels.0c03107 62. Anderlohr, J. M., Pires da Cruz, A., Bounaceur, R., & Battin-Leclerc, F. (2010). Thermal and Kinetic Impact of CO, CO2, and H2O on the Postoxidation of IC-Engine Exhaust Gases. Combustion Science and Technology, 182(1), 39-59. https://doi.org/10.1080/00102200903190844 63. Tsai, W. T., Lee, M. K., & Chang, Y. M. (2007). Fast pyrolysis of rice husk: Product yields and compositions. Bioresour Technol, 98(1), 22-28. https://doi.org/10.1016/j.biortech.2005.12.005 64. Isahak, W. N. R. W., Hisham, M. W., Yarmo, M. A., & Hin, T.-y. Y. (2012). A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews, 16(8), 5910-5923. 65. Jung, S., Kwon, D., Park, Y.-K., Lee, K. H., & Kwon, E. E. (2020). Power generation using rice husk derived fuels from CO2-assisted catalytic pyrolysis over Co/Al2O3. Energy, 206. https://doi.org/10.1016/j.energy.2020.118143 66. Hunt, J., Ferrari, A., Lita, A., Crosswhite, M., Ashley, B., & Stiegman, A. E. (2013). Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction. The Journal of Physical Chemistry C, 117(51), 26871-26880. 67. Huang, Y., Li, B., Liu, D., Xie, X., Zhang, H., Sun, H., Hu, X., & Zhang, S. (2020). Fundamental Advances in Biomass Autothermal/Oxidative Pyrolysis: A Review. ACS Sustainable Chemistry & Engineering, 8(32), 11888-11905. https://doi.org/10.1021/acssuschemeng.0c04196 68. Zhao, S., Luo, Y., Zhang, Y., & Long, Y. (2015). Experimental investigation of tar reduction properties by coupling oxidative pyrolysis and partial oxidation in a continuous reactor for biomass gasification. Energy Technology, 3(11), 1101-1107. 69. Li, D., Berruti, F., & Briens, C. (2014). Autothermal fast pyrolysis of birch bark with partial oxidation in a fluidized bed reactor. Fuel, 121, 27-38. https://doi.org/10.1016/j.fuel.2013.12.042 70. Zhao, S., Zhang, Y., & Su, Y. (2019). Experimental investigation of rice straw oxidative pyrolysis process in a hot-rod reactor. Journal of Analytical and Applied Pyrolysis, 142, 104646. 71. Wang, H., Dlugogorski, B. Z., & Kennedy, E. M. (2003). Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science, 29(6), 487-513. 72. Chase, M. W. (1998). NIST-JANAF Thermochemical Tables 4th ed. J. of Physical and Chemical Reffernce Data, 1529-1564. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93168 | - |
dc.description.abstract | 本研究的重點是改進流化床稻殼熱解工藝,解決工業化規模和生質油品質改善的挑戰。在煙道氣組成的基礎上,研究了不同的流化氣體組成,以優化熱效率和化學反應,影響產品的產率和品質。具體來說,二氧化碳的引入顯著改變了生質油的產量和合成氣的組成,增加了一氧化碳含量,同時由於焦炭氣化的反應器溫度不足而維持了焦炭的特性。 RFCC廢棄觸媒的引入影響了產品的產率和品質,提高了生質油的組成,增加了輕質化合物和酚含量。觀察到觸媒的效果取決於反應器設置,突出表明其僅與熱裂解氣體結合,並且由於觸媒壽命的限制,其在連續運行中存在局限性。為了提高能源效率,研究了在反應器內引入氧氣進行部分氧化反應。即使在6%的重量下,氧氣也會大幅提高反應器溫度,導致焦炭產量降低,合成氣成分發生變化,包括生質油中二氧化碳和水含量升高。然而,由於進口氣體溫度較低,實現自熱狀態仍然具有挑戰性。與基本情況相比,反應器修改後的能耗降低了約33%。綜上所述,本研究為優化永續生物燃料生產的流化床熱裂解過程提供了研究,強調了氣體組成、觸媒利用和能源效率之間的相互作用。 | zh_TW |
dc.description.abstract | This research focuses on enhancing the fluidized bed rice husk pyrolysis process and addressing challenges in commercial scale-up and bio-oil quality improvement. Various compositions of the fluidizing gas, based on flue gas composition, were investigated to optimize thermal efficiency and chemical reactions, impacting product yield and quality. Specifically, the introduction of CO2 significantly altered bio-oil yield and syngas composition, increasing CO content while maintaining bio-char characteristics due to insufficient reactor temperatures for char gasification. Introducing a RFCC Catalyst influenced product yield and quality, enhancing bio-oil composition with higher light compounds and increased phenol content. The catalyst's effects were observed to be dependent on reactor setup, highlighting its engagement solely with pyrolysis gas and its limitations in continuous operation due to catalyst lifespan. To improve energy efficiency, the introduction of O2 for combustion reactions within the reactor was explored. Even at a modest 6% by weight, oxygen substantially elevated reactor temperatures, leading to lower bio-char production and changes in syngas composition, including higher CO2 and water content in bio-oil. However, achieving autothermal conditions remained challenging due to low inlet gas temperatures. Reactor modifications resulted in approximately 33% reduced energy consumption compared to the base case scenario. Overall, this study provides insights into optimizing fluidized bed pyrolysis processes for sustainable biofuel production, emphasizing the interplay between gas composition, catalyst utilization, and energy efficiency | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-22T16:10:57Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-22T16:10:57Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Table of Contents I
List of Figures III List of Tables VII Nomenclature VIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective 3 1.3 Scope 4 Chapter 2 Literature Review 5 2.1 Biomass and Biofuel 5 2.2 Biomass Pyrolysis 9 2.3 Fluidized bed in Biomass Pyrolysis 20 2.3 CO2 in Biomass Pyrolysis 22 2.4 FCC Catalyst in Biomass Pyrolysis 27 2.5 Partial Oxidation in Biomass Pyrolysis 32 Chapter 3 Methodology 37 3.1 Experiment apparatus 37 3.2 Experiment material 42 3.3 Experiment procedure 45 3.4 Experiment operating condition 47 3.5 Product Analysis Method 50 Chapter 4 Result and Discussion 68 4.1 Reactor temperature profile 68 4.2 Product analysis 81 4.3 Energy analysis 94 Chapter 5 Conclusion 99 Reference 100 Appendix 105 A.1 Enthalpy parameters 105 | - |
dc.language.iso | en | - |
dc.title | 以二氧化碳與部分氧化進行流體化床稻殼熱裂解之生質油產出與升級 | zh_TW |
dc.title | Simultaneous Rice Husk Bio-oil Production and Upgrading using Fluidized Bed Pyrolyzer with CO2 and Partial Oxidation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 余柏毅;游承修 | zh_TW |
dc.contributor.oralexamcommittee | Bor-Yih Yu;Cheng-Hsiu Yu | en |
dc.subject.keyword | 流體化床,稻殼熱裂解,催化熱裂解,氧化熱裂解, | zh_TW |
dc.subject.keyword | Fluidized bed,Rice husk pyrolysis,Catalytic pyrolysis,Oxidative pyrolysis, | en |
dc.relation.page | 106 | - |
dc.identifier.doi | 10.6342/NTU202401819 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-18 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 3.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。