Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93166
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信銘zh_TW
dc.contributor.advisorHsin-Min Luen
dc.contributor.author吳禹辰zh_TW
dc.contributor.authorYu-Chen Wuen
dc.date.accessioned2024-07-22T16:10:21Z-
dc.date.available2024-07-23-
dc.date.copyright2024-07-22-
dc.date.issued2023-
dc.date.submitted2024-07-10-
dc.identifier.citationAcimovic, J., Erize, F., Hu, K., Thomas, D. J., & Mieghem, J. A. V. (2019). Product life cycle data set: Raw and cleaned data of weekly orders for personal computers. Manufacturing & Service Operations Management, 21(1), 171-176.
Al Nazi, Z., Biswas, A., Rayhan, M. A., & Abir, T. A. (2019, December). Classification of ECG signals by dot residual LSTM network with data augmentation for anomaly detection. In 2019 22nd International Conference on Computer and Information Technology (ICCIT) (pp. 1-5). IEEE.
Baardman, L., Levin, I., Perakis, G., & Singhvi, D. (2017). Leveraging Comparables for New Product Sales Forecasting. SSRN Electronic Journal.
Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation. International Journal of Forecasting, 32(2), 303-312.
Berndt, D. J., & Clifford, J. (1994). Using dynamic time warping to find patterns in time series. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (pp. 359-370).
Cao, H., & Folan, P. (2012). Product life cycle: the evolution of a paradigm and literature review from 1950–2009. Production Planning & Control, 23(8), 641-662.
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International Conference on Machine Learning (pp. 1597-1607). PMLR.
Chniti, G., Bakir, H., & Zaher, H. (2017, December). E-commerce time series forecasting using LSTM neural network and support vector regression. In Proceedings of the International Conference on Big Data and Internet of Thing (pp. 80-84).
Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 103–111, Doha, Qatar. Association for Computational Linguistics.
Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1724-1734). Doha, Qatar: Association for Computational Linguistics.
Cox, W. E. (1967). Product life cycles as marketing models. The Journal of Business, 40(4), 375-384.
Dubey, A. K., Kumar, A., García-Díaz, V., Sharma, A. K., & Kanhaiya, K. (2021). Study and analysis of SARIMA and LSTM in forecasting time series data. Sustainable Energy Technologies and Assessments, 47, 101474.
Feng, Q., Li, Y., & Wang, H. (2021). Intelligent random noise modeling by the improved variational autoencoding method and its application to data augmentation. Geophysics, 86(1), T19-T31.
Fildes, R., & Goodwin, P. (2007). Good and bad judgment in forecasting: Lessons from four companies. Foresight, 8(Fall), 5-10.
Forestier, G., Petitjean, F., Dau, H. A., Webb, G. I., & Keogh, E. (2017, November). Generating synthetic time series to augment sparse datasets. In 2017 IEEE International Conference on Data Mining (ICDM) (pp. 865-870). IEEE.
Hadsell, R., Chopra, S., & LeCun, Y. (2006, June). Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06) (Vol. 2, pp. 1735-1742). IEEE.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
Hu, K., Acimovic, J., Erize, F., Thomas, D. J., & Van Mieghem, J. A. (2019). Forecasting new product life cycle curves: Practical approach and empirical analysis: Finalist–2017 m&som practice-based research competition. Manufacturing & Service Operations Management, 21(1), 66-85.
Iglesias, G., Talavera, E., González-Prieto, Á., Mozo, A., & Gómez-Canaval, S. (2023). Data Augmentation techniques in time series domain: a survey and taxonomy. Neural Computing and Applications, 35(14), 10123-10145.
Jennings, C., Wu, D., & Terpenny, J. (2016). Forecasting obsolescence risk and product life cycle with machine learning. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(9), 1428-1439.
Kim, S., & Kang, M. (2019). Financial series prediction using Attention LSTM. arXiv preprint arXiv:1902.10877.
Kolen, J. F., & Kremer, S. C. (2001). Gradient flow in recurrent nets: The difficulty of learning long-term dependencies. In J. F. Kolen & S. C. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks (pp. 237-243). MIT Press.
Levitt, T. (1965). Exploit the Product Life Cycle. Harvard Business Review, 43, 81-94.
Moreno-Barea, F. J., Jerez, J. M., & Franco, L. (2020). Improving classification accuracy using data augmentation on small data sets. Expert Systems with Applications, 161, 113696.
Polli, R., & Cook, V. (1969). Validity of the product life cycle. The Journal of Business, 42(4), 385-400.
Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., ... & Keogh, E. (2012, August). Searching and mining trillions of time series subsequences under dynamic time warping. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 262-270).
Rumelhart, D. E., & McClelland, J. L. (1987). Learning Internal Representations by Error Propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations (pp. 318-362). MIT Press.
Sagheer, A., & Kotb, M. (2019). Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 323, 203-213.
Setia, P., Bayus, B. L., & Rajagopalan, B. (2020). The Takeoff of Open Source Software: A Signaling Perspective Based on Community Activities. MIS Quarterly, 44(3).
Shelatkar, T., Tondale, S., Yadav, S., & Ahir, S. (2020). Web traffic time series forecasting using ARIMA and LSTM RNN. In ITM Web of Conferences (Vol. 32, p. 03017). EDP Sciences.
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2018, December). A comparison of ARIMA and LSTM in forecasting time series. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1394-1401). IEEE.
Solomon, R., Sandborn, P. A., & Pecht, M. G. (2000). Electronic part life cycle concepts and obsolescence forecasting. IEEE Transactions on Components and Packaging Technologies, 23(4), 707-717.
Steenbergen, R. M., & Mes, M. R. (2020). Forecasting demand profiles of new products. Decision Support Systems, 139, 113401.
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 (NIPS'14) (pp. 3104–3112). MIT Press.
Tanti, M., Gatt, A., & Camilleri, K. P. (2018). Where to put the image in an image caption generator. Natural Language Engineering, 24(3), 467-489.
Tehrani, A. F., & Ahrens, D. (2016). Enhanced predictive models for purchasing in the fashion field by using kernel machine regression equipped with ordinal logistic regression. Journal of Retailing and Consumer Services, 32, 131-138.
Tellis, G. J., & Crawford, C. M. (1981). An evolutionary approach to product growth theory. Journal of Marketing, 45(4), 125-132.
Thomassey, S., & Fiordaliso, A. (2006). A hybrid sales forecasting system based on clustering and decision trees. Decision Support Systems, 42(1), 408-421.
Uribarri, G., & Mindlin, G. B. (2022). Dynamical time series embeddings in recurrent neural networks. Chaos, Solitons & Fractals, 154, 111612.
Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3156-3164).
Wood, L. (1990). The end of the product life cycle? Education says goodbye to an old friend. Journal of Marketing Management, 6(2), 145-155.
Yang, X., Zhang, Z., & Cui, R. (2022). Timeclr: A self-supervised contrastive learning framework for univariate time series representation. Knowledge-Based Systems, 245, 108606.
Zha, K., Cao, P., Yang, Y., & Katabi, D. (2022). Supervised Contrastive Regression. arXiv preprint arXiv:2210.01189.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93166-
dc.description.abstract產品生命週期(product life cycle)通常被作為分析產品發展軌跡的基礎,它幫助了生產、行銷和定價等關鍵決策的制定。精確的產品生命週期預測為管理者提供 了預測未來產品銷售量的優勢。然而,傳統的統計方法存在局限性,主要在於它們無法適應多樣化的應用環境。相比之下,深度學習(deep learning)方法為提高產品生命週期預測的準確性和適應性提供了一個有潛力的途徑。在本論文中,我們通過引入表徵學習(representational learning)中的對比學習(contrastive learning)並與長短期記憶(LSTM)模型相結合,構建了先進的產品生命週期預測模型,以填補這一領域的研究空白。我們的研究對產品生命週期預測領域有著多方面的貢獻。首先,我們的實驗證明了對比學習模型在增強時間序列預測方面的有效性,我們的對比學習模型能夠有效地從原始數據中提取重要資訊。其次,我們提出了多種將對比學習與長短期記憶編碼-解碼模型相結合的方法。我們提出的模型優於傳統方法,包括基本的長短期記憶模型,從而確鑿地展示了其提高產品生命週期預測的能力。zh_TW
dc.description.abstractThe Product Life Cycle (PLC) serves as a foundation for understanding a product's journey in the market, guiding crucial decisions in production, marketing, and pricing. Precise PLC forecasting offers managers the advantage of anticipating future product sales volume. However, conventional statistical methods exhibit limitations, primarily due to their reliance on extensive training data and their inability to adapt to diverse industrial contexts. In contrast, deep learning approaches present a promising avenue for elevating the accuracy and adaptability of PLC forecasts. In this thesis, we bridge this gap by introducing contrastive learning alongside a Long Short-Term Memory (LSTM) model to craft an advanced PLC forecasting model. Our research contributes to the field of PLC forecasting in two ways. Firstly, we underscore the effectiveness of contrastive learning embeddings in enhancing time series predictions, with our contrastive model effectively extracting vital information from raw data. Secondly, we propose various approaches integrating contrastive learning with the LSTM encoder-decoder model. Our proposed models outperform traditional methods, including basic LSTM models, conclusively demonstrating their potential to enhance PLC forecasts.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-22T16:10:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-22T16:10:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Product Life Cycle Analysis 3
2.1.1 PLC Definition 3
2.1.2 Quantitative Definitions 5
2.1.3 Forecasting Methods for PLC 5
2.1.4 Curve Fitting Approach 6
2.1.5 Clustering-Based PLC Forecasting 7
2.1.6 Model-Enhanced PLC Forecasting 9
2.1.7 Direct Machine Learning-Based PLC Forecasting 10
2.2 Time-Series Analysis 11
2.2.1 Representation Learning 12
2.2.2 Models 14
2.2.3 Data 18
Chapter 3 Research Gap 20
Chapter 4 Research Question 21
Chapter 5 System Design 22
5.1 Representation Learning Model 22
5.1.1 Notation 22
5.1.2 Data Pairs 23
5.1.3 Siamese Network 26
5.1.4 Contrastive Loss 28
5.2 Predicting Model 29
5.2.1 LSTM with Contrastive Learning Initialization 31
5.2.2 LSTM with Contrastive Learning Hidden Layer 32
5.2.3 LSTM with Contrastive Learning Attention 32
Chapter 6 Experimental Design 36
6.1 Dataset 36
6.2 Data Preprocessing 42
6.3 Methodology 43
Chapter 7 Experimental Results 46
Chapter 8 Conclusion 52
Chapter 9 Future Works 53
Reference 54
-
dc.language.isoen-
dc.title運用長短期記憶模型及對比學習於產品生命週期預測zh_TW
dc.titleProduct Life Cycle Forecast Using LSTM and Contrastive Learningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳宜廷;簡宇泰zh_TW
dc.contributor.oralexamcommitteeYi-Ting Chen;Yu-Tai Chienen
dc.subject.keyword產品生命週期,表徵學習,對比學習,時間序列分析,長短期記憶,zh_TW
dc.subject.keywordProduct Life Cycle,Representational Learning,Contrastive Learning,Time Series Analysis,LSTM,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202401628-
dc.rights.note未授權-
dc.date.accepted2024-07-11-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
3.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved