Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬zh_TW
dc.contributor.advisorChii-Wann Linen
dc.contributor.author陳文碩zh_TW
dc.contributor.authorWen-Shuo Chenen
dc.date.accessioned2024-07-19T16:10:11Z-
dc.date.available2025-04-30-
dc.date.copyright2024-07-19-
dc.date.issued2024-
dc.date.submitted2024-04-12-
dc.identifier.citation[1] T. R. Mhyre, J. T. Boyd, R. W. Hamill, and K. A. Maguire-Zeiss, “Parkinson’s disease,” Subcell Biochem, vol. 65, pp. 389–455, May 2012, doi: 10.1007/978-94-007-5416-4_16.
[2] GBD 2017 Disease and Injury Incidence and Prevalence Collaborators, “Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.,” Lancet, vol. 392, no. 10159, pp. 1789–1858, Nov. 2018, doi: 10.1016/S0140-6736(18)32279-7.
[3] Parkinson’s Foundation, “Statistics | Parkinson’s Foundation.” Accessed: Jan. 26, 2024. [Online]. Available: https://www.parkinson.org/understanding-parkinsons/statistics
[4] 曾菁英, “台灣地區帕金森氏症之流行病學研究,” 高雄醫學大學, 2007.
[5] A. Reeve, E. Simcox, and D. Turnbull, “Ageing and Parkinson’s disease: why is advancing age the biggest risk factor?,” Ageing Res Rev, vol. 14, no. 100, pp. 19–30, Mar. 2014, doi: 10.1016/j.arr.2014.01.004.
[6] M. M. McGregor and A. B. Nelson, “Circuit Mechanisms of Parkinson’s Disease,” Neuron, vol. 101, no. 6, pp. 1042–1056, Mar. 2019, doi: 10.1016/j.neuron.2019.03.004.
[7] N. Mallet, L. Delgado, M. Chazalon, C. Miguelez, and J. Baufreton, “Cellular and synaptic dysfunctions in Parkinson’s disease: Stepping out of the striatum,” Cells, vol. 8, no. 9. MDPI, Sep. 01, 2019. doi: 10.3390/cells8091005.
[8] J. Jankovic, “Parkinson’s disease: clinical features and diagnosis,” J Neurol Neurosurg Psychiatry, vol. 79, no. 4, pp. 368–376, Apr. 2008, doi: 10.1136/jnnp.2007.131045.
[9] National Institute of Neurological Disorders and Stroke (.gov), “Parkinson’s Disease.” Accessed: Jan. 26, 2024. [Online]. Available: https://www.ninds.nih.gov/health-information/disorders/parkinsons-disease
[10] J. Jankovic and L. G. Aguilar, “Current approaches to the treatment of Parkinson’s disease.,” Neuropsychiatr Dis Treat, vol. 4, no. 4, pp. 743–57, Aug. 2008, doi: 10.2147/ndt.s2006.
[11] P. Arias and J. Cudeiro, “Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson’s disease patients,” Exp Brain Res, vol. 186, no. 4, pp. 589–601, Apr. 2008, doi: 10.1007/s00221-007-1263-y.
[12] C. Adaikkan et al., “Gamma Entrainment Binds Higher-Order Brain Regions and Offers Neuroprotection,” Neuron, vol. 102, no. 5, pp. 929-943.e8, Jun. 2019, doi: 10.1016/j.neuron.2019.04.011.
[13] J. P. Gallivan and M. A. Goodale, “The dorsal ‘action’ pathway,” 2018, pp. 449–466. doi: 10.1016/B978-0-444-63622-5.00023-1.
[14] N. N. Foster et al., “The mouse cortico–basal ganglia–thalamic network,” Nature, vol. 598, no. 7879, pp. 188–194, Oct. 2021, doi: 10.1038/s41586-021-03993-3.
[15] N. N. Foster et al., “The mouse cortico–basal ganglia–thalamic network,” Nature, vol. 598, no. 7879, pp. 188–194, Oct. 2021, doi: 10.1038/s41586-021-03993-3.
[16] C. Ghez and J. W. Krakauer, “Back 33 The Organization of Movement,” 2006. [Online]. Available: https://api.semanticscholar.org/CorpusID:28725485
[17] R. Llinás, “Consciousness and the thalamocortical loop,” Int Congr Ser, vol. 1250, pp. 409–416, Oct. 2003, doi: 10.1016/S0531-5131(03)01067-7.
[18] W. H. R. Miltner, C. Braun, M. Arnold, H. Witte, and E. Taub, “Coherence of gamma-band EEG activity as a basis for associative learning,” Nature, vol. 397, no. 6718, pp. 434–436, Feb. 1999, doi: 10.1038/17126.
[19] C. Tallon-Baudry, O. Bertrand, F. Peronnet, and J. Pernier, “Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans,” The Journal of Neuroscience, vol. 18, no. 11, pp. 4244–4254, Jun. 1998, doi: 10.1523/JNEUROSCI.18-11-04244.1998.
[20] D. A. McCormick, M. J. McGinley, and D. B. Salkoff, “Brain state dependent activity in the cortex and thalamus,” Curr Opin Neurobiol, vol. 31, pp. 133–140, Apr. 2015, doi: 10.1016/j.conb.2014.10.003.
[21] A. D. Mizrahi-Kliger, A. Kaplan, Z. Israel, M. Deffains, and H. Bergman, “Basal ganglia beta oscillations during sleep underlie Parkinsonian insomnia,” Proc Natl Acad Sci U S A, vol. 117, no. 29, pp. 17359–17368, Jul. 2020, doi: 10.1073/pnas.2001560117.
[22] E. Ahissar, G. Nelinger, E. Assa, O. Karp, and I. Saraf-Sinik, “Thalamocortical loops as temporal demodulators across senses,” Commun Biol, vol. 6, no. 1, p. 562, May 2023, doi: 10.1038/s42003-023-04881-4.
[23] S. Ching, A. Cimenser, P. L. Purdon, E. N. Brown, and N. J. Kopell, “Thalamocortical model for a propofol-induced α-rhythm associated with loss of consciousness,” Proc Natl Acad Sci U S A, vol. 107, no. 52, pp. 22665–22670, Dec. 2010, doi: 10.1073/pnas.1017069108.
[24] K. Azdad et al., “Homeostatic Plasticity of Striatal Neurons Intrinsic Excitability following Dopamine Depletion,” PLoS One, vol. 4, no. 9, p. e6908, Sep. 2009, doi: 10.1371/journal.pone.0006908.
[25] D. J. Surmeier, “To go or not to go,” Nature, vol. 494, no. 7436, pp. 178–179, Feb. 2013, doi: 10.1038/nature11856.
[26] M. S. Patton, M. Heckman, C. Kim, C. Mu, and B. N. Mathur, “Compulsive alcohol consumption is regulated by dorsal striatum fast-spiking interneurons,” Neuropsychopharmacology, vol. 46, no. 2, pp. 351–359, Jan. 2021, doi: 10.1038/s41386-020-0766-0.
[27] K. C. Luk and A. F. Sadikot, “GABA promotes survival but not proliferation of parvalbumin-immunoreactive interneurons in rodent neostriatum: an in vivo study with stereology,” Neuroscience, vol. 104, no. 1, pp. 93–103, Apr. 2001, doi: 10.1016/S0306-4522(01)00038-0.
[28] Y. Kawaguchi, “Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum,” The Journal of Neuroscience, vol. 13, no. 11, pp. 4908–4923, Nov. 1993, doi: 10.1523/JNEUROSCI.13-11-04908.1993.
[29] S. Zhai, W. Shen, S. M. Graves, and D. J. Surmeier, “Dopaminergic modulation of striatal function and Parkinson’s disease,” J Neural Transm, vol. 126, no. 4, pp. 411–422, Apr. 2019, doi: 10.1007/s00702-019-01997-y.
[30] Mallet, Delgado, Chazalon, Miguelez, and Baufreton, “Cellular and Synaptic Dysfunctions in Parkinson’s Disease: Stepping out of the Striatum,” Cells, vol. 8, no. 9, p. 1005, Aug. 2019, doi: 10.3390/cells8091005.
[31] M. M. McGregor and A. B. Nelson, “Circuit Mechanisms of Parkinson’s Disease,” Neuron, vol. 101, no. 6, pp. 1042–1056, Mar. 2019, doi: 10.1016/j.neuron.2019.03.004.
[32] Michael H. Grider; Rishita Jessu; Rian Kabir., “Physiology, Action Potential.” Accessed: Jan. 26, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK538143/
[33] S. Alexander, A. Mathie, and J. Peters, “ION CHANNELS,” Br J Pharmacol, vol. 164, no. s1, Nov. 2011, doi: 10.1111/j.1476-5381.2011.01649_5.x.
[34] R. Dermietzel and D. C. Spray, “Gap Junctions, Electric Synapses,” in Neuroscience in the 21st Century, New York, NY: Springer New York, 2013, pp. 439–473. doi: 10.1007/978-1-4614-1997-6_18.
[35] A. L. HODGKIN and A. F. HUXLEY, “A quantitative description of membrane current and its application to conduction and excitation in nerve.,” J Physiol, vol. 117, no. 4, pp. 500–44, Aug. 1952, doi: 10.1113/jphysiol.1952.sp004764.
[36] Y. Yu and Q. Wang, “Oscillation dynamics in an extended model of thalamic-basal ganglia,” Nonlinear Dyn, vol. 98, no. 2, pp. 1065–1080, Oct. 2019, doi: 10.1007/s11071-019-05249-2.
[37] S. Sasi and B. Sen Bhattacharya, “Phase entrainment by periodic stimuli in silico: A quantitative study,” Neurocomputing, vol. 469, pp. 273–288, Jan. 2022, doi: 10.1016/j.neucom.2021.10.077.
[38] 卓嘉虹, “基於強化學習和基底核-丘腦動態網路之帕金森氏症閉迴路深腦電刺激演算法,” 國立臺灣大學, 2022. doi: 10.6342/NTU202200118.
[39] N. Kim, J. W. Barter, T. Sukharnikova, and H. H. Yin, “Striatal firing rate reflects head movement velocity,” European Journal of Neuroscience, vol. 40, no. 10, pp. 3481–3490, Nov. 2014, doi: 10.1111/ejn.12722.
[40] E. M. Adam, E. N. Brown, N. Kopell, and M. M. Mccarthy, “Deep brain stimulation in the subthalamic nucleus for Parkinson’s disease can restore dynamics of striatal networks,” 2023, doi: 10.1073/pnas.
[41] M. M. McCarthy, E. N. Brown, and N. Kopell, “Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation,” Journal of Neuroscience, vol. 28, no. 50, pp. 13488–13504, Dec. 2008, doi: 10.1523/JNEUROSCI.3536-08.2008.
[42] S. Hill and G. Tononi, “Modeling Sleep and Wakefulness in the Thalamocortical System,” J Neurophysiol, vol. 93, no. 3, pp. 1671–1698, Mar. 2005, doi: 10.1152/jn.00915.2004.
[43] K. Yoshida, S. Shi, M. Ukai-Tadenuma, H. Fujishima, R. Ohno, and H. R. Ueda, “Leak potassium channels regulate sleep duration,” Proceedings of the National Academy of Sciences, vol. 115, no. 40, Oct. 2018, doi: 10.1073/pnas.1806486115.
[44] E. Lumer, “Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms,” Cerebral Cortex, vol. 7, no. 3, pp. 207–227, Apr. 1997, doi: 10.1093/cercor/7.3.207.
[45] S. Shaikh and H. Verma, “Parkinson′s disease and anaesthesia,” Indian J Anaesth, vol. 55, no. 3, p. 228, 2011, doi: 10.4103/0019-5049.82658.
[46] S. Adodra and T. G. Hales, “Potentiation, activation and blockade of GABA A receptors of clonal murine hypothalamic GT1‐7 neurones by propofol,” Br J Pharmacol, vol. 115, no. 6, pp. 953–960, Jul. 1995, doi: 10.1111/j.1476-5381.1995.tb15903.x.
[47] N. Jiang et al., “Optimized Propofol Anesthesia Increases Power of Subthalamic Neuronal Activity in Patients with Parkinson’s Disease Undergoing Deep Brain Stimulation,” Neurol Ther, vol. 10, no. 2, pp. 785–802, Dec. 2021, doi: 10.1007/s40120-021-00259-y.
[48] D. P. Roberts and S. J. G. Lewis, “Considerations for general anaesthesia in Parkinson’s disease,” Journal of Clinical Neuroscience, vol. 48, pp. 34–41, Feb. 2018, doi: 10.1016/j.jocn.2017.10.062.
[49] T. M. Herrington, J. J. Cheng, and E. N. Eskandar, “Mechanisms of deep brain stimulation,” J Neurophysiol, vol. 115, no. 1, pp. 19–38, Jan. 2016, doi: 10.1152/jn.00281.2015.
[50] M. I. Vanegas et al., “Altered dynamics of visual contextual interactions in Parkinson’s disease,” NPJ Parkinsons Dis, vol. 5, no. 1, p. 13, Jul. 2019, doi: 10.1038/s41531-019-0085-5.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93156-
dc.description.abstract巴金森氏症(Parkinson’s disease)是一種影響中樞神經系統的慢性神經退化性疾病。目前,巴金森氏症的病理假說認為逐漸減少從緻密黑質部供應的多巴胺改變基底核神經元的放電模式並產生與巴金森氏症相關的β頻段異常震盪。在本研究中,我們透過建立了由12種基於Hodgkin-Huxley的神經元電導模型,進一步組成皮質-基底核-視丘迴路(cortical-basal ganglia-thalamic loop,CBT loop),以模擬皮質-基底核-視丘迴路在兩種不同生理與病理狀態組合下的表現,包含在不同的疾病嚴重程度(基線/輕度/中度/重度)和在不同的意識狀態(清醒/非快速動眼期/麻醉)。除此之外,我們也藉由模擬來比較深腦刺激術(deep brain stimulation)和視覺刺激如何影響巴金森氏症的皮質-基底核-視丘迴路的放電模式。本研究發現1)視丘下核的深腦刺激術能完全阻斷視丘的上游訊號傳遞到其他下游腦區。2)視覺刺激能抑制視丘中的β頻段異常震盪並將正常的訊號傳遞到其他下游腦區。zh_TW
dc.description.abstractParkinson's disease (PD) is a chronic neurodegenerative disease affecting the central nervous system. The current pathological hypothesis suggests that the loss of dopaminergic input from substantia nigra pars compacta (SNc) altered basal ganglia neurons' firing pattern and eventually led to the emergence of a pathological beta band. Here, we build a whole Hodgkin-Huxley (HH) neuron-based cortical-basal ganglia-thalamic (CBT) loop model with twelve neuronal types as a library to simulate a combination of states, including PD progression states and cross-consciousness states. The simulation states include combinations of baseline (healthy)/three stages of PD and wake/non-rapid eye movement sleep/anesthesia. We also compare how deep brain stimulation (DBS) and visual stimulation affect the CBT loop dynamics in PD in silico. Our model shows that 1) subthalamic nucleus DBS can block all signals to further propagate from thalamic relay nuclei to other downstream circuitry. 2) optical stimulation can overcome the pathological beta wave in resting, wake thalamus, and propagate the desired signal to downstream circuitry.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-19T16:10:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-19T16:10:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iii
List of Figures iv
List of Tables iv
Chapter 1 Introduction 1
1.1 Parkinson’s disease 1
1.2 Thalamocortical loop 4
1.3 Basal ganglia loop 5
1.4 Neuronal model and interconnection circuitry 7
Chapter 2 Methodology 10
2.1 Implementation of neuronal model and interconnection Circuitry 10
2.2 Recode previous work 10
2.3 Synaptic weight fitting for thalamocortical-striatal connection 11
2.4 Conditions for aroused state and PD state 23
2.5 DBS and visual stimulation 23
2.6 Model simulation 24
2.7 Data analysis 24
Chapter 3 Results 27
3.1 Finetune synaptic connection from thalamocortical to striatum 27
3.2 Model reproduces arousal state and progressing PD state 29
3.3 Visual stimulation efficacy versus STN DBS efficacy 30
Chapter 4 Discussion 54
References 56
-
dc.language.isoen-
dc.title基於皮層-基底核-視丘迴路模擬對視覺刺激於巴金森氏症治療之機制研究zh_TW
dc.titleInvestigate the therapeutic mechanism of visual stimulation on Parkinson's disease through cortical-basal ganglia-thalamic loop simulationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee彭盛裕;魏安祺zh_TW
dc.contributor.oralexamcommitteeSheng-Yu Peng;An-Chi Weien
dc.subject.keyword巴金森氏症,皮層-基底核-視丘迴路,晝夜節律,非快速眼動睡眠,propofol 麻醉,腦深層刺激術,視覺刺激,zh_TW
dc.subject.keywordParkinson’s disease,cortical-basal ganglia-thalamic loop,circadian rhythm,non-rapid eye movement,propofol anesthesia,deep brain stimulation,visual stimulation,en
dc.relation.page62-
dc.identifier.doi10.6342/NTU202400853-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-04-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2025-04-30-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved