請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93155
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李瑞庭 | zh_TW |
dc.contributor.advisor | Anthony J. T. Lee | en |
dc.contributor.author | 張竣翔 | zh_TW |
dc.contributor.author | Chun-Hsiang Chang | en |
dc.date.accessioned | 2024-07-19T16:09:52Z | - |
dc.date.available | 2024-07-20 | - |
dc.date.copyright | 2024-07-19 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-10 | - |
dc.identifier.citation | Aggarwal CC, Subbian K (2012) Event detection in social streams. Proceedings of the SIAM International Conference on Data Mining. 624–635.
Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv:1607.06450. Cao Y, Peng H, Wu J, Dou Y, Li J, Yu PS (2021) Knowledge-preserving incremental social event detection via heterogeneous gnns. Proceedings of the Web Conference. 3383–3395. Chen L, Fang J, Chao P, Liu A, Zhao P (2022) Online social event detection via filtering strategy graph neural network. Proceedings of the International Conference on Web Engineering. 66–81. Chen X, Xu H, Zhang Y, Tang J, Cao Y, Qin Z, Zha H (2018) Sequential recommendation with user memory networks. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. 108–116. Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. 226–231. Estévez PA, Tesmer M, Perez CA, Zurada JM (2009) Normalized mutual information feature selection. IEEE Transactions on Neural Networks 20(2):189–201. Fedoryszak M, Frederick B, Rajaram V, Zhong C (2019) Real-time event detection on social data streams. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2774–2782. Fung GPC, Yu JX, Yu PS, Lu H (2005) Parameter free bursty events detection in text streams. Proceedings of the 31st International Conference on Very Large Data Bases. 181–192. Gao S, Chen X, Ren Z, Zhao D, Yan R (2021) Meaningful answer generation of e-commerce question-answering. ACM Transactions on Information Systems 39(2):1–26. Graves A, Wayne G, Danihelka I (2014) Neural turing machines. arXiv preprint arXiv:1410.5401. Graves A, Wayne G, Reynolds M, Harley T, Danihelka I, Grabska-Barwińska A, Colmenarejo SG, Grefenstette E, Ramalho T, Agapiou J (2016) Hybrid computing using a neural network with dynamic external memory. Nature 538(7626):471–476. Gu H, Dong X, Zhou D (2022) Dynamic key-value memory networks based on concept structure for knowledge tracing. Proceedings of the 4th International Conference on Computer Science and Technologies in Education. 290–294. Guo Y, Zang Z, Gao H, Xu X, Wang R, Liu L, Li J (2024) Unsupervised social event detection via hybrid graph contrastive learning and reinforced incremental clustering. Knowledge-Based Systems 284:111225. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. Advances in Neural Information Processing Systems 30. Hansen S, Pritzel A, Sprechmann P, Barreto A, Blundell C (2018) Fast deep reinforcement learning using online adjustments from the past. Advances in Neural Information Processing Systems 31. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778. Hu L, Zhang B, Hou L, Li J (2017) Adaptive online event detection in news streams. Knowledge-Based Systems 138:105–112. Huang Y, Wang Y, Liao Q, Jia Y, Fu Y (2022) Multi-semantics learning for social event detection via heterogeneous GNNs. Proceedings of the International Joint Conference on Neural Networks. 1–9. Kang D, Lee M (2019) Seq-dnc-seq: Context aware dialog generation system through external memory. Proceedings of the International Joint Conference on Neural Networks. 1–8. Kim B, Kim H, Kim G (2018) Abstractive summarization of reddit posts with multi-level memory networks. arXiv preprint arXiv:1811.00783. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907. Kumar A, Irsoy O, Ondruska P, Iyyer M, Bradbury J, Gulrajani I, Zhong V, Paulus R, Socher R (2016) Ask me anything: Dynamic memory networks for natural language processing. Proceedings of the International Conference on Machine Learning. 1378–1387. Le H, Tran T, Nguyen T, Venkatesh S (2018) Variational memory encoder-decoder. Advances in Neural Information Processing Systems 31. Liu B, Han FX, Niu D, Kong L, Lai K, Xu Y (2020) Story forest: Extracting events and telling stories from breaking news. ACM Transactions on Knowledge Discovery from Data 14(3):1–28. Liu Q, Zhang H, Zeng Y, Huang Z, Wu Z (2018) Content attention model for aspect based sentiment analysis. Proceedings of the World Wide Web Conference. 1023–1032. Liu Y, Peng H, Guo J, He T, Li X, Song Y, Li J (2018) Event detection and evolution based on knowledge base. Proceedings of the 1st Workshop on Knowledge Base Construction, Reasoning and Mining. 1–7. Liu Y, Peng H, Li J, Song Y, Li X (2020) Event detection and evolution in multi-lingual social streams. Frontiers of Computer Science 14(5):145612. Liu Z, Yang Y, Huang Z, Shen F, Zhang D, Shen HT (2017) Event early embedding: Predicting event volume dynamics at early stage. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 997–1000. Macedo AQ, Marinho LB, Santos RL (2015) Context-aware event recommendation in event-based social networks. Proceedings of the 9th ACM Conference on Recommender Systems. 123–130. Manning CD, Surdeanu M, Bauer J, Finkel JR, Bethard S, McClosky D (2014) The Stanford CoreNLP natural language processing toolkit. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. 55–60. McMinn AJ, Moshfeghi Y, Jose JM (2013) Building a large-scale corpus for evaluating event detection on twitter. Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. 409–418. Miller A, Fisch A, Dodge J, Karimi AH, Bordes A, Weston J (2016) Key-value memory networks for directly reading documents. arXiv preprint arXiv:1606.03126. Oord A van den, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. arXiv:1807.03748. Ozdikis O, Karagoz P, Oğuztüzün H (2017) Incremental clustering with vector expansion for online event detection in microblogs. Social Network Analysis and Mining 7(1):56. Peng H, Li J, Gong Q, Song Y, Ning Y, Lai K, Yu PS (2019) Fine-grained event categorization with heterogeneous graph convolutional networks. arXiv preprint arXiv:1906.04580. Peng H, Zhang R, Li S, Cao Y, Pan S, Philip SY (2022) Reinforced, incremental and cross-lingual event detection from social messages. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(1):980–998. Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. Proceedings of the Conference on Empirical Methods in Natural Language Processing. 1532–1543. Ren J, Jiang L, Peng H, Cao Y, Wu J, Yu PS, He L (2022) From known to unknown: Quality-aware self-improving graph neural network for open set social event detection. Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 1696–1705. Ren J, Jiang L, Peng H, Liu Z, Wu J, Philip SY (2022) Evidential temporal-aware graph-based social event detection via Dempster-Shafer theory. Proceedings of the IEEE International Conference on Web Services. 331–336. Ren J, Peng H, Jiang L, Liu Z, Wu J, Yu Z, Philip SY (2024) Uncertainty-guided boundary learning for imbalanced social event detection. IEEE Transactions on Knowledge and Data Engineering 36(6):2701–2715. Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: Real-time event detection by social sensors. Proceedings of the 19th International Conference on World Wide Web. 851–860. Schlichtkrull M, Kipf TN, Bloem P, Van Den Berg R, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. Proceedings of the European Semantic Web Conference. 593–607. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1):1929–1958. Sukhbaatar S, Weston J, Fergus R (2015) End-to-end memory networks. Advances in Neural Information Processing Systems 28. Sun F, Liu J, Wu J, Pei C, Lin X, Ou W, Jiang P (2019) BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 1441–1450. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27. Tong C, Peng H, Bai X, Dai Q, Zhang R, Li Y, Xu H, Gu X (2023) Learning discriminative text representation for streaming social event detection. IEEE Transactions on Knowledge and Data Engineering 35(12):12295–12309. Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. The Journal of Machine Learning Research 9(11):2579–2605. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, Kaiser L, Polosukhin I (2017) Attention is all you need. Advances in Neural Information Processing Systems 30. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. arXiv:1710.10903. Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. The Journal of Machine Learning Research 11:2837–2854. Wang X, Wang Z, Han X, Jiang W, Han R, Liu Z, Li J, Li P, Lin Y, Zhou J (2020) MAVEN: A massive general domain event detection dataset. arXiv preprint arXiv:2004.13590. Weston J, Chopra S, Bordes A (2014) Memory networks. arXiv preprint arXiv:1410.3916. Ying L, Yu HUI, Wang J, Ji Y, Qian S (2021) Fake news detection via multi-modal topic memory network. IEEE Access 9:132818–132829. Yu W, Li J, Bhuiyan MZA, Zhang R, Huai J (2017) Ring: Real-time emerging anomaly monitoring system over text streams. IEEE Transactions on Big Data 5(4):506–519. Zhang K, Zi J, Wu LG (2007) New event detection based on indexing-tree and named entity. Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 215–222. Zhao S, Gao Y, Ding G, Chua TS (2017) Real-time multimedia social event detection in microblog. IEEE Transactions on Cybernetics 48(11):3218–3231. Zhou X, Chen L (2014) Event detection over twitter social media streams. The VLDB Journal 23(3):381–400. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93155 | - |
dc.description.abstract | 隨著社群媒體的快速發展,近年來從社群媒體串流中偵測事件受到的關注日益增加。因為它可以快速地突顯重大事件,有助於人們更有效且全面地瞭解事件的樣貌。然而,從社群媒體串流(如Twitter串流)中偵測事件具有相當大的挑戰性,因為社群媒體串流具有順序性且龐大。此外,它們包含各種元素,像是文本、時間、用戶、命名實體、主題標籤和隱含的社交網絡結構。再者,它們的內容通常很短,充斥著非標準的縮寫,並且嚴重傾向於熱門和流行的主題。先前的研究主要從單詞級或訊息級觀點提取訊息的表示式。然而,前者可能忽略了隱含在整個訊息中的重要語義和結構資訊,而後者可能忽略了某些事件與訊息中特定單詞高度相關的事實。為了解決上述問題,我們提出一個創新的雙層表示方法,稱為DLR (Dual-Level Representation),它整合了單詞級和訊息級觀點,可更全面地萃取訊息的特徵。實驗結果顯示,我們提出的方法不論是在離線或遞增情境中,在標準化互信息(NMI)、調整互信息(AMI)和調整蘭德係數(ARI)上均優於當前最先進的方法。另外,我們的方法可以幫助用戶、組織和政府進行危機管理、輿情分析和擬定相關決策。 | zh_TW |
dc.description.abstract | With the rapid growth of social media, detecting events from social media streams has received considerable attention in recent years. This is because it highlights major happenings, assisting people in comprehensively understanding the real world more effectively. However, detecting events from social media streams, like Twitter streams, is quite challenging due to their sequential and large-scale nature. Furthermore, they contain diverse elements such as text, time, users, named entities, hashtags, and implicit social network structures. Moreover, the content is often short, filled with non-standard abbreviations, and heavily skewed towards hot and trending topics. Previous studies have mainly focused on deriving the message representations from either the token-level or the message-level perspective for social event detection. However, the former may overlook important semantic and structural information implicitly hidden in the whole message, while the latter may ignore the fact that some events are highly associated with specific tokens in the message. To resolve such problems, we propose a novel method, called Dual-Level Representation (DLR), which simultaneously considers both the message-level and token-level perspectives to obtain a more comprehensive understanding of message content. The experimental results show that our proposed method outperforms the state-of-the-art methods in terms of the normalized mutual information (NMI), adjusted mutual information (AMI), and adjusted rand index (ARI) in both offline and incremental scenarios. Furthermore, our method can benefit users, organizations, and governments to do crisis management, public opinion analysis, and decision making. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-19T16:09:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-19T16:09:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Table of Contents i
List of Figures ii List of Tables iii Chapter 1 Introduction 1 Chapter 2 Related Work 4 2.1 Social Event Detection 4 2.2 Memory Networks 6 2.3 Graph Neural Networks 6 Chapter 3 The Proposed Framework 8 3.1 Message-Level Representations 8 3.1.1 Graph convolution for messages 8 3.1.2 Key-value memory network 10 3.2 Token-Level Representations 12 3.2.1 Graph convolution for tokens 13 3.2.2 Multi-head attention mechanism 13 3.3 Contrastive Learning 14 3.4 Event Detection 16 Chapter 4 Experimental Results 18 4.1 Experiment Setup 18 4.1.1 Baselines 19 4.1.2 Evaluation metrics 19 4.1.3 Experiment settings 20 4.2 Performance Evaluation 22 4.2.1 Offline evaluation 22 4.2.2 Incremental evaluation 24 4.3 Ablation Study 26 4.3.1 Offline evaluation 26 4.3.2 Incremental evaluation 27 4.4 Visualization Analysis 29 Chapter 5 Conclusions and Future Work 33 References 36 Appendix A 41 | - |
dc.language.iso | en | - |
dc.title | 運用雙層訊息表示模型進行遞增社會事件偵測 | zh_TW |
dc.title | Dual-Level Message Representations for Incremental Social Event Detection | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳怡瑾;戴敏育 | zh_TW |
dc.contributor.oralexamcommittee | Nancy I-Chin Wu;Min-Yuh Day | en |
dc.subject.keyword | 社會事件偵測,圖神經網路,記憶機制,注意力機制,對比學習, | zh_TW |
dc.subject.keyword | Social event detection,Graph neural network,Memory mechanism,Attention mechanism,Contrastive learning, | en |
dc.relation.page | 47 | - |
dc.identifier.doi | 10.6342/NTU202401368 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-11 | - |
dc.contributor.author-college | 管理學院 | - |
dc.contributor.author-dept | 資訊管理學系 | - |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。