Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93140
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁祥光zh_TW
dc.contributor.advisorHsiang-Kuang Liangen
dc.contributor.author陳映如zh_TW
dc.contributor.authorYing-Ru Chenen
dc.date.accessioned2024-07-18T16:11:55Z-
dc.date.available2024-07-19-
dc.date.copyright2024-07-18-
dc.date.issued2024-
dc.date.submitted2024-07-12-
dc.identifier.citationGoenka A, Tiek D, Song X, Huang T, Hu B, Cheng SY. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells 10, (2021).
Taal W, Bromberg JE, van den Bent MJ. Chemotherapy in glioma. CNS oncology 4, 179-192 (2015).
Ostrom QT, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016-2020. Neuro Oncol 25, iv1-iv99 (2023).
Minniti G, et al. Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 97, 377-381 (2010).
Khan I, et al. Nanomedicine for glioblastoma: Progress and future prospects. Seminars in cancer biology 86, 172-186 (2022).
Tomar MS, Kumar A, Srivastava C, Shrivastava A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochimica et biophysica acta Reviews on cancer 1876, 188616 (2021).
Chien CH, Hsueh WT, Chuang JY, Chang KY. Dissecting the mechanism of temozolomide resistance and its association with the regulatory roles of intracellular reactive oxygen species in glioblastoma. J Biomed Sci 28, 18 (2021).
Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. Journal of Radiation Research and Applied Sciences 8, 247-254 (2015).
rgeting mitochondria. Cancer letters 564, 216223 (2023).
Noch EK, Ramakrishna R, Magge RJWn. Challenges in the treatment of glioblastoma: multisystem mechanisms of therapeutic resistance. 116, 505-517 (2018).
Zhou W, et al. Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nat Commun 11, 3811 (2020).
Carlos-Reyes A, Muniz-Lino MA, Romero-Garcia S, Lopez-Camarillo C, Hernandez-de la Cruz ON. Biological Adaptations of Tumor Cells to Radiation Therapy. Front Oncol 11, 718636 (2021).
Qin L, et al. CDK1 Enhances Mitochondrial Bioenergetics for Radiation-Induced DNA Repair. Cell reports 13, 2056-2063 (2015).
Gupta K, et al. Radiation Induced Metabolic Alterations Associate With Tumor Aggressiveness and Poor Outcome in Glioblastoma. Front Oncol 10, 535 (2020).
Xiao Z, Dai Z, Locasale JW. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun 10, 3763 (2019).
Landis CJ, Tran AN, Scott SE, Griguer C, Hjelmeland AB. The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells. Biochimica et biophysica acta Reviews on cancer 1869, 175-188 (2018).
Vasan K, Werner M, Chandel NS. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell metabolism 32, 341-352 (2020).
Zong WX, Rabinowitz JD, White E. Mitochondria and Cancer. Molecular cell 61, 667-676 (2016).
Shteinfer-Kuzmine A, Verma A, Arif T, Aizenberg O, Paul A, Shoshan-Barmaz V. Mitochondria and nucleus cross-talk: Signaling in metabolism, apoptosis, and differentiation, and function in cancer. IUBMB life 73, 492-510 (2021).
Porporato PE, Payen VL, Baselet B, Sonveaux P. Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid metabolism. Cellular and molecular life sciences : CMLS 73, 1349-1363 (2016).
Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell 166, 555-566 (2016).
Warburg O, Wind F, Negelein E. THE METABOLISM OF TUMORS IN THE BODY. The Journal of general physiology 8, 519-530 (1927).
Hoang-Minh LB, et al. Infiltrative and drug-resistant slow-cycling cells support metabolic heterogeneity in glioblastoma. The EMBO journal 37, (2018).
Watson DC, et al. GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. Nature Cancer 4, 648-664 (2023).
Janiszewska M, et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes & development 26, 1926-1944 (2012).
LeBleu VS, et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16, 992-1003, 1001-1015 (2014).
Zhang J. Teaching the basics of autophagy and mitophagy to redox biologists--mechanisms and experimental approaches. Redox biology 4, 242-259 (2015).
Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells. Current opinion in cell biology 33, 95-101 (2015).
Zhu Q, et al. GRAF1 integrates PINK1-Parkin signaling and actin dynamics to mediate cardiac mitochondrial homeostasis. Nature Communications 14, 8187 (2023).
Fritsch LE, Moore ME, Sarraf SA, Pickrell AM. Ubiquitin and Receptor-Dependent Mitophagy Pathways and Their Implication in Neurodegeneration. Journal of molecular biology 432, 2510-2524 (2020).
Zachari M, Ktistakis NT. Mammalian Mitophagosome Formation: A Focus on the Early Signals and Steps. Frontiers in cell and developmental biology 8, 171 (2020).
Ayilam Ramachandran R, Sanches JM, Robertson DM. The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Frontiers in medicine 10, 1064938 (2023).
Fiorillo M, et al. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget 7, 34084-34099 (2016).
Cifuentes Kottkamp A, et al. Atovaquone Inhibits Arbovirus Replication through the Depletion of Intracellular Nucleotides. Journal of virology 93, (2019).
Yin LM, Wei Y, Wang Y, Xu YD, Yang YQ. Long term and standard incubations of WST-1 reagent reflect the same inhibitory trend of cell viability in rat airway smooth muscle cells. International journal of medical sciences 10, 68-72 (2013).
Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nature protocols 1, 2315-2319 (2006).
Shabestani Monfared G, Ertl P, Rothbauer M. Microfluidic and Lab-on-a-Chip Systems for Cutaneous Wound Healing Studies. Pharmaceutics 13, (2021).
Justus CR, Marie MA, Sanderlin EJ, Yang LV. Transwell In Vitro Cell Migration and Invasion Assays. Methods in molecular biology (Clifton, NJ) 2644, 349-359 (2023).
Biosciences B. Detection of Apoptosis Using the BD Annexin V FITC Assay on the BD FACSVerse™ System. (ed^(eds) (2011).
Caines JK, Barnes DA, Berry MD. The Use of Seahorse XF Assays to Interrogate Real-Time Energy Metabolism in Cancer Cell Lines. Methods in molecular biology (Clifton, NJ) 2508, 225-234 (2022).
Chacko BK, et al. The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clinical science (London, England : 1979) 127, 367-373 (2014).
Sakamuru S, Attene-Ramos MS, Xia M. Mitochondrial Membrane Potential Assay. Methods in molecular biology (Clifton, NJ) 1473, 17-22 (2016).
Karna P, Zughaier S, Pannu V, Simmons R, Narayan S, Aneja R. Induction of reactive oxygen species-mediated autophagy by a novel microtubule-modulating agent. J Biol Chem 285, 18737-18748 (2010).
Klimaszewska-Wisniewska A, Halas-Wisniewska M, Tadrowski T, Gagat M, Grzanka D, Grzanka A. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells. Cancer Cell Int 16, 10 (2016).
Dupertuis YM, Delie F, Cohen M, Pichard CJCNE. In ovo method for evaluating the effect of nutritional therapies on tumor development, growth and vascularization. 2, 9-17 (2015).
Vu BT, et al. Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Scientific Reports 8, 8524 (2018).
Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nature Reviews Cancer 16, 635-649 (2016).
Venneti S, Thompson CB. Metabolic Reprogramming in Brain Tumors. Annual review of pathology 12, 515-545 (2017).
Bi J, Chowdhry S, Wu S, Zhang W, Masui K, Mischel PS. Altered cellular metabolism in gliomas — an emerging landscape of actionable co-dependency targets. Nature Reviews Cancer 20, 57-70 (2020).
Salaud C, et al. Mitochondria transfer from tumor-activated stromal cells (TASC) to primary Glioblastoma cells. Biochemical and biophysical research communications 533, 139-147 (2020).
Iranmanesh Y, et al. Mitochondria's Role in the Maintenance of Cancer Stem Cells in Glioblastoma. Front Oncol 11, 582694 (2021).
Sighel D, et al. Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth. Cell reports 35, 109024 (2021).
Kao TJ, Lin CL, Yang WB, Li HY, Hsu TI. Dysregulated lipid metabolism in TMZ-resistant glioblastoma: pathways, proteins, metabolites and therapeutic opportunities. Lipids in health and disease 22, 114 (2023).
Cui X, et al. Blockage of EGFR/AKT and mevalonate pathways synergize the antitumor effect of temozolomide by reprogramming energy metabolism in glioblastoma. Cancer communications (London, England) 43, 1326-1353 (2023).
Ashton TM, et al. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nature Communications 7, 12308 (2016).
Gao X, et al. Anti-malarial atovaquone exhibits anti-tumor effects by inducing DNA damage in hepatocellular carcinoma. American journal of cancer research 8, 1697-1711 (2018).
Wang J, et al. Development and validation of a novel mitophagy-related gene prognostic signature for glioblastoma multiforme. BMC Cancer 22, 644 (2022).
Li X, et al. Targeting SIRT3 sensitizes glioblastoma to ferroptosis by promoting mitophagy and inhibiting SLC7A11. Cell death & disease 15, 168 (2024).
Nassef MZ, Hanke JE, Hiller K. Mitochondrial metabolism in macrophages. American journal of physiology Cell physiology 321, C1070-c1081 (2021).
Bilotta MT, Antignani A, Fitzgerald DJ. Managing the TME to improve the efficacy of cancer therapy. Frontiers in immunology 13, 954992 (2022).
Boreel DF, Span PN, Heskamp S, Adema GJ, Bussink JJCCR. Targeting oxidative phosphorylation to increase the efficacy of radio-and immune-combination therapy. 27, 2970-2978 (2021).
Jiang N, et al. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nature Communications 13, 1511 (2022).
Bai R, Cui J. Mitochondrial immune regulation and anti-tumor immunotherapy strategies targeting mitochondria. Cancer letters 564, 216223 (2023).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93140-
dc.description.abstract高級惡性膠質瘤,尤其是惡性膠質母細胞瘤,是常見且高度侵襲性的成人腦瘤。目前的標準治療包括腫瘤切除、化療和放療。雖然放射治療會引起 DNA 斷裂,但同時腫瘤細胞也會啟動 DNA 修復機制並驅動腫瘤的代謝重編程,促使腫瘤侵襲性增強並對治療產生抗性。粒線體調節生物體的生物合成和代謝反應,在腫瘤代謝中發揮至關重要的作用,促使腫瘤呈現更高的代謝可塑性。Atovaquone 是一種FDA許可的抗瘧疾藥物,可以靶向抑制氧化磷酸化中的電子傳遞鏈的細胞色素 bc1 複合物。我們提出了一種新策略,利用Atovaquone的能量剝奪來開發透明質酸/Pluronic F127複合水凝膠的藥物遞送系統,透過抑制DNA修復與輻射協同作用來根除高級別膠質瘤。由透明質酸和Pluronic F127組成的可注射水凝膠應用於手術後腦瘤移除的空腔。 Atovaquone水凝膠具有溫感性質和緩慢降解兩個特點。透過流變儀測試可知聚合物水凝膠在37℃左右會發生溶膠-凝膠轉變,增加臨床使用者的便利性。由分光光度計進行測試可知水凝膠能夠控制釋放Atovaquone長達兩周,以此達到局部緩慢釋放的目的。使用 WST-1 的細胞活性測驗確定了抑制細胞增殖的有效Atovaquone濃度。粒線體壓力測試顯示Atovaquone不僅可以抑制粒線體產生ATP,同時,阻礙腫瘤整體代謝導向糖解作用。透過免疫螢光染色和電子顯微鏡可以觀察到粒線體自噬的過程。Colony formation實驗證明了Atovaquone與輻射的協同抗癌作用。彗星實驗和蛋白質印跡分析表明經由Atovaquone以及放射治療的組別DNA 損傷增強,並且抑制腫瘤DNA 修復機制,從而導致神經膠質瘤細胞侵襲和遷移減少、增強癌細胞凋亡。在動物實驗中,使用雞胚胎模型模擬局部給藥之狀況並且使用C57BL/6小鼠建立小鼠模型來驗證協同抗癌作用。綜上所述,Atovaquone的能量剝奪特性可介導粒線體代謝,並在腫瘤切除的空腔內進行顱內注射並持續緩慢釋放,與放射治療達到協同作用,從而根除高級別膠質瘤。我們的研究表明發展局部遞送改變腫瘤代謝之藥物增加放射敏感性用於腦瘤治療的潛力。zh_TW
dc.description.abstractHigh-grade gliomas, especially glioblastoma, are common and highly aggressive adult brain tumors. The current standard treatments include tumor excision followed by chemotherapy and radiotherapy. While radiation therapy induces DNA breakage, it concurrently triggers DNA repair mechanisms and drives metabolic reprogramming, culminating in heightened tumor aggressiveness resistance to treatment. Mitochondria, regulating biosynthesis and metabolic reactions of organisms, plays a crucial role in cancer metabolism, thereby endowing tumors with remarkable metabolic plasticity. Atovaquone is an antimicrobial medication, which inhibits the electron transport system at the level of cytochrome bc1 complex. We proposed a novel strategy to utilize energy deprivation of atovaquone to develop a drug delivery system of Hyaluronic acid/Pluronic F127 composites hydrogel synergizing with radiation by inhibiting DNA repair to eradicate high-grade glioma. The injectable hydrogel composed of hyaluronic acid and Pluronic F127 is aim to apply on the surgical cavity intracranially after surgery. There are two characteristics of the Atovaquone hydrogel, thermosensitive and slow degradation. The polymeric hydrogel could undergo sol-gel transition at around 37℃, which is tested by rheometer. The polymeric hydrogel enables 2-week controlled release of atovaquone before radiotherapy, which is tested by UV-VIS spectroscopy. The cell viability using WST-1 identified the effective atovaquone concentration to inhibit cell proliferation. The mitochondria stress test illustrated Atovaquone not only inhibit ATP production by mitochondria but also obstruct metabolism transform to glycolysis. The process of mitochondrial autophagy can be observed through immunofluorescence staining and electron microscopy. The colony formation demonstrated the synergistic anticancer effect of atovaquone synergizing with radiation. The Comet assay and Western blotting analysis of γ-H2AX treated by atovaquone and radiation demonstrated enhancing DNA damage and reducing DNA repairment, which led to a reduction in glioma cell invasion and migration, while also enhancing cancer cell apoptosis. In animal studies, a chorioallantoic Membrane (CAM) simulated local administration scenarios, while a C57BL/6 mouse model was established to validate the synergistic anticancer efficacy. These results suggest that the energy deprivation feature of atovaquone mediates mitochondrial metabolism with sustained-release in the tumor-removed cavity to synergize with radiation for eradicating high-grade glioma, suggesting its potential developing localized delivery of agents that alter tumor metabolism to enhance radiosensitivity for the treatment of brain tumors.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-18T16:11:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-18T16:11:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試審定書 I
致謝 II
中文摘要 III
ABSTRACT V
CONTENTS VII
LIST OF FIGURES X
LIST OF TABLES XI
CHAPTER1 INTRODUCTION 1
CHAPTER2 MATERIALS AND METHODS 12
2.1 Cell lines and culture conditions 12
2.2 Cell Viability Assay 12
2.3 Colony Formation Assay 13
2.4 Migration Assay 14
2.5 Transwell Invasion Assay 15
2.6 Apoptosis Assay 16
2.7 Comet Assay 16
2.8 Western blotting 17
2.9 Mitochondria Stress Test 18
2.10 ATP Assay 19
2.11 Mitochondrial Membrane Potential Assay 20
2.12 Immunofluorescence 21
2.13 Acridine orange staining 21
2.14 Preparation of HA/F127/ATO 22
2.15 Gel degradation and drug release profile of atovaquone thermosensitive hydrogel 22
2.16 Chorioallantoic Membrane (CAM) Model 23
2.17 In vivo 23
2.18 Statistical analysis 24
CHAPTER3 RESULTS 25
3.1 Preparation of Atovaquone-incorporated thermosensitive Hydrogels for Intracranial Injection 25
3.2 Mitochondrial Targeting for Energy Boosting in High-Grade Glioma 28
3.3 Atovaquone synergizing with radiation via enhancing DNA damage and reducing DNA repairment 32
3.4 Atovaquone triggered mitochondrial depolarization, facilitating the formation of autophagosomes. 39
3.5 Transmission electron microscopy (TEM) image for mitochondria treated with atovaquone 48
3.6 Atovaquone suppressed cancerous feature and provoked apoptosis in high-grade glioma 51
3.7 Tumor suppression function of Atovaquone-incorporated thermosensitive hydrogel in CAM model 55
3.8 In vivo analysis of biocompatibility and tumor suppression 59
CHAPTER4 DISCUSSION 65
Reference 70
-
dc.language.isoen-
dc.subject惡性膠質母細胞瘤zh_TW
dc.subject局部注射zh_TW
dc.subject粒線體代謝zh_TW
dc.subject放射治療zh_TW
dc.subjectlocal injectionen
dc.subjectmitochondrial metabolismen
dc.subjectGlioblastomaen
dc.subjectradiationen
dc.title顱內注射能量剝奪的阿托伐醌溫感性水凝膠介導粒線體功能障礙以協同放射治療膠質母細胞瘤zh_TW
dc.titleIntracranial Injection of Energy-Deprived Atovaquone-Incorporated Thermosensitive Hydrogel Mediates Mitochondrial Dysfunction to Synergize with Radiation for Glioblastomaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee趙本秀;黃楓婷zh_TW
dc.contributor.oralexamcommitteePen-hsiu Chao;Feng-Ting Huangen
dc.subject.keyword惡性膠質母細胞瘤,放射治療,粒線體代謝,局部注射,zh_TW
dc.subject.keywordGlioblastoma,radiation,mitochondrial metabolism,local injection,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202401690-
dc.rights.note未授權-
dc.date.accepted2024-07-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved