Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93134
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許正一zh_TW
dc.contributor.advisorZeng-Yei Hseuen
dc.contributor.author陳維浩zh_TW
dc.contributor.authorWei-Hau Chenen
dc.date.accessioned2024-07-18T16:10:11Z-
dc.date.available2024-07-19-
dc.date.copyright2024-07-18-
dc.date.issued2024-
dc.date.submitted2024-07-12-
dc.identifier.citationAdu, J. K., Oades, J. M. 1978. Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biology and Biochemistry. 10, 109-115.
Almajmaie, A., Hardie, M., Acuna, T., Birch, C. 2017. Evaluation of methods for determining soil aggregate stability. Soil and Tillage Research. 167, 39-45.
Alvarez, R., 2005. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use and Management. 21, 38-52.
Anderson, T. H., Domsch, K. H. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry. 21, 471-479.
Atere CT, Ge T, Zhu Z, Tong C, Jones DL, Shibistova O, Guggenberger G, Wu J. 2017. Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via dryingrewetting cycles and nitrogen fertilisation. Biol Fertil Soils, 53, 407–417.
Audette, Y., Congreves, K.A., Schneider, K., Zaro, G.C., Nunes, A.L., Zhang, H. and Voroney, R.P. 2021. The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review. Biology and Fertility of Soils, 57, 881-894.
Baldock, J. A., Oades, J. M., Nelson, P. N., Skene, T. M., Golchin, A., Clarke, P. 1997. Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Soil Research. 35, 1061-1084.
Baldock, J. A., Oades, J. M., Waters, A. G., Peng, X., Vassallo, A. M., Wilson, M. A. 1992. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13 C NMR spectroscopy. Biogeochemistry. 16, 1-42.
Bending, G.D., Turner, M.K. and Jones, J.E. 2002. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology and Biochemistry, 34, 1073-1082.
Berthomieu, C. and Hienerwadel, R. 2009. Fourier transform infrared (FTIR) spectroscopy. Photosynthesis Research. 101, 157-170.
Bronick, C.J. and Lal, R., 2005. Soil structure and management: a review. Geoderma, 124, 3-22.
Calderón, F.J., Haddix, M., Conant, R., Magrini-Bair, K. and Paul, E. 2013. Diffuse‐reflectance Fourier‐transform mid‐infrared spectroscopy as a method of characterizing changes in soil organic matter. Soil Science Society of America Journal. 77, 1591-1600.
Calderón, F.J., Reeves, J.B., Collins, H.P. and Paul, E.A., 2011. Chemical differences in soil organic matter fractions determined by diffuse‐reflectance mid‐infrared spectroscopy. Soil Science Society of America Journal. 75, 568-579.
Chaplot, V., Cooper, M. 2015. Soil aggregate stability to predict organic carbon outputs from soils. Geoderma. 243, 205-213.
Chen, C.L., M.L. Lin, H.Y. Guo, Chi-Fang Chiang, Tsang-Sen Liu and Chien-Liang Chu. 2000. Impact assessment of shifts of land use on soil organic carbon storage of cultivated land in Taiwan. Soil and Environment. 3, 363-378.
Chen, C.L. and S. Lian. 2002. Modeling of organic matter turnover and fertility maintenance in Taiwan and Japan. Journal of Agricultural Research of China 51, 50-65. (In Chinese).
Chen, J. S., Chiu, C. Y. 2003. Characterization of soil organic matter in different particle-size fractions in humid subalpine soils by CP/MAS 13C NMR. Geoderma. 117, 129-141.
Chen, X., Hu, Y., Xia, Y., Zheng, S., Ma, C., Rui, Y., He, H., Huang, D., Zhang, Z., Ge, T. and Wu, J., 2021. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology. 27, 2478-2490.
Conte, P., Piccolo, A., Van Lagen, B., Buurman, P., De Jager, P. A.1997. Quantitative differences in evaluating soil humic substances by liquid-and solid-state 13C-NMR spectroscopy. Geoderma. 80, 339-352.
Cui, J., Zhu, R., Wang, X., Xu, X., Ai, C., He, P., Liang, G., Zhou, W. and Zhu, P., 2022. Effect of high soil C/N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition. Journal of Environmental Management, 303, 114155.
Denef, K., Zotarelli, L., Boddey, R. M.,and Six, J. 2007. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols. Soil Biology and Biochemistry. 39, 1165-1172.
Dou, X., He, P., Zhu, P. and Zhou, W. 2016. Soil organic carbon dynamics under long-term fertilization in a black soil of China: Evidence from stable C isotopes. Scientific reports, 6, 21488.
Dong, W.Y., Zhang, X.Y., Dai, X.Q., Fu, X.L., Yang, F.T., Liu, X.Y., Sun, X.M., Wen, X.F. and Schaeffer, S. 2014. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Applied Soil Ecology, 84, 140-147.
Dungait, J.A., Hopkins, D.W., Gregory, A.S. and Whitmore, A.P., 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781-1796.
Ellerbrock, R.H. and Kaiser, M., 2005. Stability and composition of different soluble soil organic matter fractions–evidence from δ13C and FTIR signatures. Geoderma, 128, 28-37.
Enchilik, Polina, Elena Aseyeva, and Ivan Semenkov. 2023. Labile and Stable Fractions of Organic Carbon in a Soil Catena (the Central Forest Nature Reserve, Russia). Forests. 14, 1367.
Flessa, H., Amelung, W., Helfrich, M., Wiesenberg, G. L., Gleixner, G., Brodowski, S., Rethemeyer, J., Kramer, C., Grootes, P. M. 2008. Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. Journal of Plant Nutrition and Soil Science. 171, 36-51.
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., Rumpel, C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature. 450, 277-280.
Friedel, J.K., Munch, J.C. and Fischer, W.R. 1996. Soil microbial properties and the assessment of available soil organic matter in a haplic luvisol after several years of different cultivation and crop rotation. Soil Biology and Biochemistry, 28, 479-488.
Gotoh, S. and Onikura, Y. 1971. Organic acids in a flooded soil receiving added rice straw and their effect on the growth of rice. Soil Science and Plant Nutrition, 17, 1-8.
Gupta, V.V. and Germida, J.J., 2015. Soil aggregation: Influence on microbial biomass and implications for biological processes. Soil Biology and Biochemistry, 80, A3-A9.
Hargreaves, P. R., Brookes, P. C., Ross, G. J. S., and Poulton, P. R. 2003. Evaluating soil microbial biomass carbon as an indicator of long-term environmental change. Soil Biology and Biochemistry, 35, 401-407.
Helfrich, M., Ludwig, B., Buurman, P., Flessa, H. 2006. Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state 13C NMR spectroscopy. Geoderma, 136, 331-341.
Hermle, S., Anken, T., Leifeld, J., and Weisskopf, P. 2008. The effect of the tillage system on soil organic carbon content under moist, cold-temperate conditions. Soil and Tillage Research, 98, 94-105.
Herrick, J. E., Whitford, W. G., De Soyza, A. G., Van Zee, J. W., Havstad, K. M., Seybold, C. A., & Walton, M. 2001. Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena. 44, 27-35.
Holka, M., Kowalska, J.,and Jakubowska, M. 2022. Reducing carbon footprint of agriculture—can organic farming help to mitigate climate change?. Agriculture. 12, 1383.
Jiang, G., Xu, M., He, X., Zhang, W., Huang, S., Yang, X., Liu, H., Peng, C., Shirato, Y., Iizumi, T. and Wang, J. 2014. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Global Biogeochemical Cycles, 28, 319-333.
Jien, S.H., Hseu, Z.Y., Guo, H.Y., Tsai, C.C., and Chen, Zu.S. 2010. Organic carbon storage and management strategies of the rural soils on the basis of soil information system in Taiwan. Proceedings of International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries, IPB International Conference Center, Bogor.
Jobbágy, E. G., Jackson, R. B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications. 10, 423-436.
Jordan, D., Beare, M. H. 1991. A comparison of methods for estimating soil microbial biomass carbon. Agriculture, Ecosystems & Environment. 34, 35-41.
Kallenbach, C. and Grandy, A.S., 2011. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agriculture, Ecosystems & Environment, 144, 241-252.
Keel, S.G., Anken, T., Büchi, L., Chervet, A., Fliessbach, A., Flisch, R., Huguenin-Elie, O., Mäder, P., Mayer, J., Sinaj, S. and Sturny, W., 2019. Loss of soil organic carbon in Swiss long-term agricultural experiments over a wide range of management practices. Agriculture, Ecosystems & Environment. 286, 106654.
Kiem, R., Knicker, H., Körschens, M. and Kögel-Knabner, I., 2000. Refractory organic carbon in C-depleted arable soils, as studied by 13C NMR spectroscopy and carbohydrate analysis. Organic Geochemistry. 31, 655-668.
Kravchenko, A.N., Guber, A.K., Razavi, B.S., Koestel, J., Quigley, M.Y., Robertson, G.P. and Kuzyakov, Y. 2019. Microbial spatial footprint as a driver of soil carbon stabilization. Nature communications, 10, 3121.
Kögel-Knabner, I. 1997. 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma. 80, 243-270.
Kölbl, A., Kögel‐Knabner, I. 2004. Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid‐state 13C NMR spectroscopy. Journal of Plant Nutrition and Soil Science, 167, 45-53.
Lal, R. 2013. Intensive agriculture and the soil carbon pool. Journal of Crop Improvement. 27, 735-751.
Lal, R., Follett, R. F., Stewart, B. A., and Kimble, J. M. 2007. Soil carbon sequestration to mitigate climate change and advance food security. Soil Science. 172, 943-956.
Leifeld, J., Siebert, S., Kögel-Knabner, I. 2002. Changes in the chemical composition of soil organic matter after application of compost. European Journal of Soil Science. 53, 299–309.
Leinweber, P., Jandl, G., Baum, C., Eckhardt, K. U., Kandeler, E. 2008. Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biology and Biochemistry. 40, 1496-1505.
Li, X., Zhang, H., Sun, M., Xu, N., Sun, G. and Zhao, M. 2020. Land use change from upland to paddy field in Mollisols drives soil aggregation and associated microbial communities. Applied Soil Ecology, 146,103351.
Li, Z., Zhao, B., Wang, Q., Cao, X. and Zhang, J., 2015. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies. PLOS ONE, 10, e0124359.
Liang, C. and Balser, T.C., 2011. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nature Reviews Microbiology, 9, 75-75.
Liu, J., Calderón, F.J. and Fonte, S.J., 2021. Compost inputs, cropping system, and rotation phase drive aggregate‐associated carbon. Soil Science Society of America Journal, 85, 829-846.
Liu, P., Zhou, W., Cui, H., Tan, J., Cao, S. 2019. Structural characteristics of humic substances in buried ancient paddy soils as revealed by 13C NMR spectroscopy. Environmental Geochemistry and Health. 41, 2459-2472.
Lobe, I., Sandhage-Hofmann, A., Brodowski, S., Du Preez, C. C., Amelung, W. 2011. Aggregate dynamics and associated soil organic matter contents as influenced by prolonged arable cropping in the South African Highveld. Geoderma. 162, 251-259.
Lu, J., Li, S., Liang, G., Wu, X., Zhang, Q., Gao, C., Li, J., Jin, D., Zheng, F., Zhang, M. and Abdelrhman, A.A., 2021. The contribution of microorganisms to soil organic carbon accumulation under fertilization varies among aggregate size classes. Agronomy, 11, 2126.
Luo, Z., Feng, W., Luo, Y., Baldock, J., Wang, E. 2017. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Global Change Biology. 23, 4430-4439.
Mathew, I., Shimelis, H., Mutema, M., Minasny, B., Chaplot, V. 2020. Crops for increasing soil organic carbon stocks–A global meta analysis. Geoderma. 367, 114230.
Mayer, M., Krause, H. M., Fliessbach, A., Mäder, P., Steffens, M. 2022. Fertilizer quality and labile soil organic matter fractions are vital for organic carbon sequestration in temperate arable soils within a long-term trial in Switzerland. Geoderma. 426, 116080.
Memon, S.Q., Mirjat, M.S., Mughal, A.Q. and Amjad, N. 2012. Effects of different tillage and fertilizer treatments on growth and yield components of maize. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences. 28,160-176.
Minasny, B., Malone, B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z-S., Cheng K., Das B.S., Fielda D.J., Gimona A., Hedley C.B., Hong S.Y., Mandal B., Marchant B.P., Martin M., McConkey B.G., Mulder V.L., O’Rourke S., Richer-de-Forges A.C., Odeh I., Padarian J., Paustian K, Pan G., Poggio L., Savin I., Stolbovoy V., Stockmann U., Sulaeman Y., Tsui C-C., Vågen T-G., vanWesemael B., Winowiecki L. 2017. Soil carbon 4 per mille. Geoderma. 292, 59-86
Muhammad Rasheed, M.R., Tariq Mahmood, T.M., Nazir, M.S., Bhutta, W.A. and Abdul Ghaffar, A.G. 2004. Nutrient efficiency and economics of hybrid maize under different planting methods and nutrient levels.
Nishimura, C., Yanai, J., Nakao, A., Ando, K., Oga, T., Otake, T., Taki, T., Kasuya, M., Takayama, T., Hasukawa, H., Takehisa, K., Takahashi, T., Togami, K., Takamoto,A., Funakawa, S. 2024. Effects of long-term application of inorganic fertilizer and organic amendments on the amounts of fractionated soil organic carbon and their determining factors in paddy fields. Soil Science and Plant Nutrition. pp. 1-10.
Ono, K., Hiradate, S., Morita, S., Ohse, K., Hirai, K. 2011. Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant and Soil. 338, 171-181.
Patel, K. F., Myers-Pigg, A., Bond-Lamberty, B., Fansler, S. J., Norris, C. G., McKever, S. A., Zheng, J., Rod, K.A., Bailey, V. L. 2021. Soil carbon dynamics during drying vs. rewetting: Importance of antecedent moisture conditions. Soil Biology and Biochemistry. 156, 108165.
Paul, E.A. 2016. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98,109-126.
Peltre, C., Bruun, S., Du, C., Thomsen, I.K. and Jensen, L.S. 2014. Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy. Soil Biology and Biochemistry, 77,41-50.
Peltre, C., Christensen, B.T., Dragon, S., Icard, C., Kätterer, T. and Houot, S. 2012. RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments. Soil Biology and Biochemistry, 52, 49-60.
Peltre, C., Gregorich, E.G., Bruun, S., Jensen, L.S. and Magid, J. 2017. Repeated application of organic waste affects soil organic matter composition: evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers. Soil Biology and Biochemistry, 104,117-127.
Piccolo, A. 2011. The nature of soil organic matter and innovative soil managements to fight global changes and maintain agricultural productivity. In Carbon sequestration in Agricultural soils: a multidisciplinary approach to innovative methods (pp. 1-19). Berlin, Heidelberg: Springer Berlin Heidelberg.
Piccolo, A., Conte, P. 1998. Advances in nuclear magnetic resonance and infrared spectroscopies of soil organic particles. Structure and surface reactions of soil particles., 183-250. Preston, C.M. 1996. Applications of NMR to soil organic matteranalysis: history and prospects.Soil Science.161,144-166.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M., Soong, J., Trigalet, S., Vermeire, M. L., Rovira, P., Wesemael, B., Wiesmeier, M., Yeasmin, S., Yevdokimov, I., Nieder, R. 2018. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils–A comprehensive method comparison. Soil Biology and Biochemistry. 125, 10-26.
Quideau, S.A., Anderson, M.A., Graham, R.C., Chadwick, O.A., Trumbore, S.E. 2000. Soil organic matter processes: characterization by 13C NMR and 14C measurements. Forest Ecology and Management. 138, 19-27.
Ramesh, T., Bolan, N.S., Kirkham, M.B., Wijesekara, H., Kanchikerimath, M., Rao, C.S., Sandeep, S., Rinklebe, J., Ok, Y.S., Choudhury, B.U. and Wang, H. 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy. 156, 1-107.
Ramírez, P.B., Calderón, F.J., Fonte, S.J., Santibáñez, F. and Bonilla, C.A. 2020. Spectral responses to labile organic carbon fractions as useful soil quality indicators across a climatic gradient. Ecological Indicators, 111, 106042.
Rodriguez, A.F., Gerber, S., Inglett, P.W., Tran, N.T., Long, J.R., Daroub, S.H. 2021. Soil carbon characterization in s subtropical drained peatland. Geoderma. 382,114758
Schimel, D. S., Coleman, D. C., Horton, K. A. 1985. Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma. 36, 201-214.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S.,Trumbore, S. E. 2011. Persistence of soil organic matter as an ecosystem property. Nature. 478, 49-56.
Six, J., Bossuyt, H., Degryze, S. and Denef, K., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and tillage research, 79, 7-31.
Six, J., Conant, R. T., Paul, E. A., Paustian, K. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155-176.
Skjemstad, J. O., Clarke, P., Golchin, A., Oades, J. M. 1997. Characterization of soil organic matter by solid-state 13C NMR spectroscopy.
Skjemstad, J. O., Swift, R. S., McGowan, J. A. 2006. Comparison of the particulate organic carbon and permanganate oxidation methods for estimating labile soil organic carbon. Soil Research. 44, 255-263.
Smith, J. L., Paul, E. A. 2017. The significance of soil microbial biomass estimations. In Soil biochemistry (pp. 357-398). Routledge, London.
Sohi, S. P., Mahieu, N., Arah, J. R., Powlson, D. S., Madari, B., Gaunt, J. L. 2001. A procedure for isolating soil organic matter fractions suitable for modeling. Soil Science Society of America Journal. 65, 1121-1128.
Stockmann, U., Adams, M.A., Crawford, J.W., Field, D.J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A.B., Courcelles,V.R., Singh, K., Wheeler, I., Abbott, L., Angers, D.A., Baldock, J., Bird, M., Brookes, P.C., Chenu, C., Jastrow, J.D., Lal, R., Lehmann, J., O’Donnell, A.G., Parton, W.J., Whitehead, D., Zimmermann, M. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment. 164, 80-99.
Tan, Z., Lal, R., Owens, L., Izaurralde, R. C. 2007. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil and Tillage Research. 92, 53-59.
Trumbore, S.E. and Zheng, S. 1996. Comparison of fractionation methods for soil organic matter 14C analysis. Radiocarbon, 38, 219-229.
Trumbore, S., 2009. Radiocarbon and soil carbon dynamics. Annual review of earth and planetary sciences, 37, 47-66.
Tyagi, L., Kumari, B. and Singh, S.N., 2010. Water management—A tool for methane mitigation from irrigated paddy fields. Science of the Total Environment, 408, 1085-1090.
Van Veen, J.A. and Kuikman, P.J., 1990. Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry, 11, 213-233.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B. 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry. 39, 2183-2207.
Wang, Q., Chai, Q., Dou, X., Zhao, C., Yin, W., Li, H. and Wei, J., 2024. Soil Microorganisms in Agricultural Fields and Agronomic Regulation Pathways. Agronomy, 14, 669.
Wei, L., Ge, T., Zhu, Z., Ye, R., Penuelas, J., Li, Y., Lynn, T.M., Jones, D.L., Wu, J. and Kuzyakov, Y., 2022. Paddy soils have a much higher microbial biomass content than upland soils: A review of the origin, mechanisms, and drivers. Agriculture, Ecosystems & Environment, 326,107798.
Wickings, K., Grandy, A.S., Reed, S.C. and Cleveland, C.C., 2012. The origin of litter chemical complexity during decomposition. Ecology letters, 15, 1180-1188.
Witzgall, K., Vidal, A., Schubert, D. I., Höschen, C., Schweizer, S. A., Buegger, F., Pouteau, V., Chenu, C., Mueller, C. W. (2021). Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications. 12, 1-10.
Yanai, J., Nishimura, C., Nakao, A., Ando, K., Oga, T., Otake, T., Taki, K., Kasuya, M., Takayama, T., Hasukawa, H. and Takehisa, K., 2024. Effects of long-term application of inorganic fertilizers and organic amendments on the turnover rates of fractionated soil organic carbon and their determining factors in paddy fields. Soil Science and Plant Nutrition,1-7.
Yang, C., Yang, L., Ouyang, Z. 2005. Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes. Geoderma. 124, 133-142.
Yang, C., Yang, L., Yang, Y. and Ouyang, Z. 2004. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management, 70, 67-81.
Yang, X., Ren, W., Sun, B. and Zhang, S., 2012. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma, 177.49-56.
Ying, L.Ü., Wei, B.A.I., Xuefeng, W.A.N.G., Qian, C.A.I. and LIANG, W. 2017. Responses of soil micro-food web to land use change from upland to paddy fields with different years of rice cultivation. Pedosphere, 27, 155-164.
Yoo, G., Yang, X. and Wander, M.M., 2011. Influence of soil aggregation on SOC sequestration: a preliminary model of SOC protection by aggregate dynamics. Ecological engineering, 37,487-495.
Yu, W., Huang, W., Weintraub-Leff, S. R., Hall, S. J. 2022. Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils?. Soil Biology and Biochemistry. 172, 108756.
Zhang, G. L., Gong, Z. T. 2003. Pedogenic evolution of paddy soils in different soil landscapes. Geoderma. 115, 15-29.
Zhang, H., Xue, Y., Wang, Z., Yang, J. and Zhang, J. 2009. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science, 49, 2246-2260.
Zhang, J., An, T., Chi, F., Wei, D., Zhou, B., Hao, X., JIN, L., Wang, J. 2019.Evolution over years of structural characteristics of humic acids in Black Soil as a function of various fertilization treatments. Journal of Soils and Sediments. 19, 1959-1969.
Zhang, Y., Sun, C., Chen, Z., Zhang, G., Chen, L. and Wu, Z., 2019. Stoichiometric analyses of soil nutrients and enzymes in a Cambisol soil treated with inorganic fertilizers or manures for 26 years. Geoderma, 353, pp.382-390.
Zhao, H., Lv, Y., Wang, X., Zhang, H., Yang, X. 2012. Tillage impacts on the fractions and compositions of soil organic carbon. Geoderma. 189,397–403.
Zhao, N., Yang, X., Huang, G., Lu, Y., Zhang, J., Fan, Y., Drury, C.F., Yang, X. 2021. Chemical and spectroscopic characteristics of humic acid from a clay loam soil in Ontario after 52 years of consistent fertilization and crop rotation. Pedosphere. 31, 204–213
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., Fuhrer, J. 2007. Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science. 58, 658-667.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93134-
dc.description.abstract增加土壤碳匯不僅能提升土壤肥力,亦能減緩溫室效應。農田中不同耕作方式會影響作物產量與土壤中有機碳含量,但僅量測有機碳含量無法判斷土壤中的有機碳是否能穩定保存。因此將有機碳藉由分解的難易度,區分成具有不同物理化學特性的型態,能判斷有機碳在土壤中的周轉速率,了解土壤有機碳品質。然而,目前台灣農田土壤的有機碳型態之相關研究不足。因此,本研究目的為研究台灣北部地區旱田在不同施肥以及水田土壤在不同水分管理下,計算作物生產量與土壤碳匯含量,以及有機碳型態在含量與分布上的變化,以了解台灣農田土壤有機碳的品質。研究區域位於新北市新店區台大實驗農場安康分場,種植狼尾草 (旱田) 以及水稻 (水田)。採集土壤樣品進行有機碳型態分離,分別是低密度態、高密度態、可氧化態及非可氧化態,並分析團粒穩定度、有機碳官能基與微生物之活性。研究結果顯示,在旱田中,化學肥料可提升地上部作物產量,而有機肥料施用則增加了最多的土壤有機碳含量。混合施用有機肥料與硝化抑制劑可維持較佳的團粒穩定度和微生物生長,並提供持續的碳源。在水田不同水分管理下,慣行灌溉具有較高水稻產量,而雨養管理有較高的團粒穩定度和微生物量。在不同水分管理下,土壤有機碳型態分布具有相同趨勢,主要以重密度態儲存。綜合評估地上部產量與土壤有機碳匯及其穩定度,建議旱田採用有機肥料與化學肥料混合施用,水田採用雨養管理,以提升台灣農田土壤有機碳品質。zh_TW
dc.description.abstractIncreasing soil carbon sequestration not only enhances soil fertility but also mitigates the greenhouse effect. Measuring total organic carbon content cannot accurately reflect the quality of soil carbon sequestration. Therefore, organic carbon is divided into different fractions based on its decomposition difficulty. These fractions exhibit distinct physical and chemical properties in the soil, allowing us to assess the stability of soil organic carbon and understand its quality. However, there is still a lack of research on the organic carbon fractions of farmland soils in Taiwan. Therefore, this study aims to investigate the crop yield and soil carbon sequestration content in uplands under different fertilization practices and in paddy fields under different water management practices in northern Taiwan. The study also aims to analyze the changes in the content and distribution of various organic carbon fractions to understand the quality of soil organic carbon in Taiwanese farmlands. The study area is located in the farmland of the Ankang Branch of NTU Farm, Xindian District, New Taipei City, and is planted with Pennisetum (upland field) and rice (paddy field). Soil samples were collected regularly to separate the fractions of organic carbon, which were the light fraction, heavy fraction, oxidizable fraction, and non-oxidizable fraction. And analyze the aggregate stability, organic matter functional groups, and microbial biomass carbon. The results showed that in the upland, chemical fertilizers increased the yield of aboveground crops, while organic fertilizers increased soil carbon sinks. A mixed application of organic fertilizers with nitrification inhibitors maintains optimal aggregate stability and microbial activity and provides a sustainable source of carbon. Under different water management practices in paddy fields, conventional irrigation had higher rice yields, while rainfed management led to higher aggregate stability and microbial biomass. The distribution of soil organic carbon forms exhibits the same trend under different water management practices, with the majority stored in the heavy fraction. Considering both above-ground yield and the sequestration and stability of soil organic carbon, it is recommended to use a combination of organic and chemical fertilizers in upland fields and adopt rainfed management in paddy fields to enhance the quality of soil organic carbon in Taiwanese farmlands.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-18T16:10:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-18T16:10:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目次 ⅵ
圖次 ⅷ
表次 ⅸ
第一章 前言 1
第二章 文獻回顧 3
2.1土壤有機碳特性與有機碳型態劃分 3
2.2判斷土壤有機碳含量與品質的輔助因子 4
2.3農業土地利用及管理對土壤有機質之影響 6
第三章 材料與方法 9
3.1 研究區域、試驗設計及樣品採樣 9
3.1.1旱田試驗設計及樣品採樣 10
3.1.2水田試驗設計及樣品採樣 10
3.2土壤剖面調查與野外型態特徵描述 14
3.3 土壤物化性質分析 14
3.4土壤有機碳型態分離 19
3.5土壤微生物生質碳 21
3.6土壤團粒穩定度 22
3.7固體 13C CP/MAS-NMR 23
3.8 傅立葉轉換紅外光譜FT-IR 23
3.9 AMS碳14定年 24
3.10統計分析 24
第四章 結果與討論 25
4.1土壤物化性質 25
4.2 不同耕作下農田作物產量與土壤有機碳匯28
4.2.1旱田 28
4.2.2水田 30
4.3土壤有機碳型態特性與不同耕作方式後型態分布31
4.3.1旱田土壤 31
4.3.2水田土壤 36
4.4有機碳型態分布與團粒穩定度之關聯 39
4.4.1旱田土壤 39
4.4.2水田土壤 42
4.5有機碳型態分布與微生物生質碳之關聯 44
4.5.1旱田土壤 44
4.5.2水田土壤 46
4.6有機碳型態分布與有機質官能基之關聯 49
4.6.1旱田土壤 49
4.6.2水田土壤 50
第五章 結論 52
第六章 參考文獻 53
第七章 附錄 69
-
dc.language.isozh_TW-
dc.subject水田zh_TW
dc.subject有機碳型態zh_TW
dc.subject施肥zh_TW
dc.subject土壤碳儲存zh_TW
dc.subject旱田zh_TW
dc.subjectpaddy fielden
dc.subjectfertilizationen
dc.subjectuplanden
dc.subjectsoil carbon storageen
dc.subjectorganic carbon fractionationen
dc.title台灣北部不同耕作方式對土壤有機碳型態分布的影響zh_TW
dc.titleFractionation of soil organic carbon affected by different croppings in northern Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王尚禮;鄭智馨zh_TW
dc.contributor.oralexamcommitteeShan-Li Wang;Chih-Hsin Chengen
dc.subject.keyword有機碳型態,土壤碳儲存,旱田,水田,施肥,zh_TW
dc.subject.keywordorganic carbon fractionation,soil carbon storage,upland,paddy field,fertilization,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202401495-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-lift2029-07-12-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
1.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved