Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93124
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗賢zh_TW
dc.contributor.advisorTsung-Hsien Linen
dc.contributor.author楊軒zh_TW
dc.contributor.authorShuan Yangen
dc.date.accessioned2024-07-18T16:06:47Z-
dc.date.available2024-07-19-
dc.date.copyright2024-07-18-
dc.date.issued2024-
dc.date.submitted2024-07-16-
dc.identifier.citation[1] J. Jung et al., "A Single-Crystal-Oscillator-Based Clock-Management IC with 18× Start-Up Time Reduction and 0.68ppm/ºC Duty-Cycled Machine-Learning-Based RCO Calibration," 2022 IEEE International Solid-State Circuits Conference (ISSCC), pp. 58-60, Feb. 2022.
[2] J. A. Angevare, Y. Chae and K. A. A. Makinwa, "A Highly Digital 2210μm2 Resistor-Based Temperature Sensor with a 1-Point Trimmed Inaccuracy of ±1.3 °C (3σ) from -55 °C to 125 °C in 65nm CMOS," 2021 IEEE International Solid-State Circuits Conference (ISSCC), pp. 76-78, Feb. 2021.
[3] C.-Y. Lin, Y.-W. Huang and T.-H. Lin, "A ±20-ppm -50°C-105°C 1-µA 32.768-kHz Clock Generator with a System-HFXO-Assisted Background Calibration," 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 1-3, Nov. 2021.
[4] J. Park et al., "A 0.65V 1316µm2 Fully Synthesizable Digital Temperature Sensor Using Wire Metal Achieving 0.16nJ·%2-Accuracy FoM in 5nm FinFET CMOS," 2022 IEEE International Solid-State Circuits Conference (ISSCC), pp. 220-222, Feb. 2022.
[5] C.-Y. Lin, Y.-W. Huang and T.-H. Lin, "A Temperature-Compensated Crystal Oscillator with Piecewise Polynomial Varactor Compensation Achieving ±3.75-ppm Inaccuracy From −30°C to 90°C," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 4, pp. 2016-2020, Apr. 2022.
[6] D. S. Truesdell, S. Li and B. H. Calhoun, "A 0.5-V 560-kHz 18.8-fJ/Cycle On-Chip Oscillator With 96.1-ppm/°C Steady-State Stability Using a Duty-Cycled Digital Frequency-Locked Loop," IEEE Journal of Solid-State Circuits, vol. 56, no. 4, pp. 1241-1253, Apr. 2021.
[7] A. Paidimarri, D. Griffith, A. Wang, G. Burra and A. P. Chandrakasan, "An RC Oscillator with Comparator Offset Cancellation," IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1866-1877, Aug. 2016.
[8] X. An, S. Pan, H. Jiang and K. A. A. Makinwa, "A 0.01 mm2 10MHz RC Frequency Reference with a 1-Point On-Chip-Trimmed Inaccuracy of ±0.28% from -45 °C to 125 °C in 0.18μm CMOS," 2023 IEEE International Solid-State Circuits Conference (ISSCC), pp. 60-62, Feb. 2023.
[9] K. Park et al., "A 1.4μW/MHz 100MHz RC Oscillator with ±1030ppm Inaccuracy from -40°C to 85°C After Accelerated Aging for 500 Hours at 125°C," 2023 IEEE International Solid-State Circuits Conference (ISSCC), pp. 62-64, Feb. 2023.
[10] E. Sacco, J. Vergauwen and G. Gielen, "A 16.1-bit Resolution 0.064-mm2 Compact Highly Digital Closed-Loop Single-VCO-Based 1-1 Sturdy-MASH Resistance-to-Digital Converter with High Robustness in 180-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 55, no. 9, pp. 2456-2467, Sept. 2020.
[11] R. B. Staszewski, D. Leipold, K. Muhammad and P. T. Balsara, "Digitally Controlled Oscillator (DCO)-Based Architecture for RF Frequency Synthesis in a Deep-Submicrometer CMOS Process," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 11, pp. 815-828, Nov. 2003.
[12] I. M. Filanovsky and H. Baltes, "CMOS Schmitt Trigger Design," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 1, pp. 46-49, Jan. 1994.
[13] "Detect and Remove Outliers in Data – MATLAB rmoutliers," [Online]. Available: https://www.mathworks.com/help/matlab/ref/rmoutliers.html. [Accessed May 2024]
[14] M. Baert and W. Dehaene, "A 5-GS/s 7.2-ENOB Time-Interleaved VCO-Based ADC Achieving 30.5 fJ/cs," IEEE Journal of Solid-State Circuits, vol. 55, no. 6, pp. 1577-1587, June 2020.
[15] S. Pan, J. A. Angevare and K. A. A. Makinwa, "A Hybrid Thermal-Diffusivity/Resistor-Based Temperature Sensor with a Self-Calibrated Inaccuracy of ±0.25 °C (3σ) from -55°C to 125°C," 2021 IEEE International Solid-State Circuits Conference (ISSCC), pp. 78-80, Feb. 2021.
[16] Y. Lempel, R. Breuer and J. Shor, "A 700-μm², Ring-Oscillator-Based Thermal Sensor in 16-nm FinFET," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 2, pp. 248-252, Feb. 2022.
[17] B.-S. Lien, S. L. Liu, W.-L. Lai, Y.-C. Lu, Y.-C. Peng and K. C.-H. Hsieh, "A 0.65V 900µm² BEoL RC-Based Temperature Sensor with ±1°C Inaccuracy from −25°C to 125°C," 2024 IEEE International Solid-State Circuits Conference (ISSCC), pp. 68-70, Feb. 2024.
[18] Y. Shen, H. Li, E. Cantatore and P. Harpe, "A 2.98pJ/conversion 0.0023mm2 Dynamic Temperature Sensor with Fully On-Chip Corrections," 2023 IEEE International Solid-State Circuits Conference (ISSCC), pp. 1-3, Feb. 2023.
[19] K.A.A. Makinwa, "Temperature Sensor Performance Survey," [Online]. Available: http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls. [Accessed May 2024]
[20] B. Wang, M.-K. Law and A. Bermak, "A BJT-Based CMOS Temperature Sensor Achieving an Inaccuracy of ± 0.45 °C (3σ) from -50 °C to 180 °C and a Resolution-FoM of 7.2pJ·K2 at 150 °C," 2022 IEEE International Solid-State Circuits Conference (ISSCC), pp. 72-74, Feb. 2022.
[21] W. Choi, et al., "A Compact Resistor-Based CMOS Temperature Sensor with an Inaccuracy of 0.12 °C (3Image) and a Resolution FoM of 0.43 pJImageK2 in 65-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3356-3367, Dec. 2018.
[22] S. Pan and K. A. A. Makinwa, "Energy-Efficient High-Resolution Resistor-Based Temperature Sensors," Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design, pp. 183-200, Sept. 2017.
[23] S. Pan and K. A. A. Makinwa, "A CMOS Resistor-Based Temperature Sensor with a 10fJ·K2 Resolution FoM and 0.4°C (3σ) Inaccuracy From −55°C to 125°C After a 1-point Trim," 2020 IEEE International Solid-State Circuits Conference (ISSCC), pp. 68-70, Feb. 2020.
[24] H. Jiang, C.-C. Huang, M. R. Chan and D. A. Hall, "A 2-in-1 Temperature and Humidity Sensor With a Single FLL Wheatstone-Bridge Front-End," IEEE Journal of Solid-State Circuits, vol. 55, no. 8, pp. 2174-2185, Aug. 2020.
[25] A. Khashaba, J. Zhu, A. Elmallah and P. K. Hanomolu, "A 0.0088mm2 Resistor-Based Temperature Sensor Achieving 92fJ·K2 FoM in 65nm CMOS," 2020 IEEE International Solid-State Circuits Conference (ISSCC), pp. 60-62, Feb. 2020.
[26] J. A. Angevare and K. A. A. Makinwa, "A 6800-μm2 Resistor-Based Temperature Sensor With ±0.35 °C (3σ) Inaccuracy in 180-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 54, no. 10, pp. 2649-2657, Oct. 2019.
[27] D. Shi, K.-M. Lei, R. P. Martins and P.-I. Mak, "A 0.4-V 0.0294-mm2 Resistor-Based Temperature Sensor Achieving ±0.24 °C p2p Inaccuracy From 40 °C to 125 °C and 385 fJ·K2 Resolution FoM in 65-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 58, no. 9, pp. 2543-2553, Sept. 2023.
[28] Y. Lee, T. Kim and Y. Chae, "A 0.9-V 6400-μm2 Resistor-Based Temperature Sensor with a One-Point Trimmed 3σ Inaccuracy of ±0.64 °C from -50 °C to 125 °C," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 9, pp. 3313-3317, Sept. 2023.
[29] Y.-H. Wang and S.-J. Chang, "A 7b 4.5GS/s 4× Interleaved SAR ADC with Fully On-Chip Background Timing Skew Calibration," 2023 IEEE International Solid-State Circuits Conference (ISSCC), pp. 16-18, Feb. 2023.
[30] S. Pan and K. A. A. Makinwa, "A 0.25 mm2-Resistor-Based Temperature Sensor with an Inaccuracy of 0.12 °C (3σ) From −55 °C to 125 °C," IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3347-3355, Dec. 2018.
[31] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, "A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time," 2007 IEEE International Solid-State Circuits Conference (ISSCC), pp. 314-605, Feb. 2007.
[32] C.-H. Weng, C.-K. Wu and T.-H. Lin, "A CMOS Thermistor-Embedded Continuous-Time Delta-Sigma Temperature Sensor with a Resolution FoM of 0.65 pJ °C2," IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2491-2500, Nov. 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93124-
dc.description.abstract在物聯網裝置中,參考時脈訊號產生器及溫度感測器皆為重要的組成部分。本篇論文探討了這兩種系統,並提出了可應用於物聯網系統中的超低功耗的晶片內參考時脈產生器,以及一個小面積的時域溫度感測器。
第一個作品著重於32.768千赫茲、具有嵌入式溫度感測功能的時脈產生器。此電路使用了一個基於RC的弛張振盪器,並透過一個百萬赫茲頻段的石英振盪器進行校正。校正過程使用了一個數位鎖頻迴路並運作於0.2%的低工作週期以節省系統功耗。嵌入的溫度感測器則透過偵測系統中數位控制振盪器的控制訊號,來擷取溫度的資訊。此晶片使用TSMC 90奈米製程下線,其平均功耗為339奈瓦特。產生的時脈訊號在攝氏-40至85度的溫度範圍內,可達到+25/-63百萬分點的頻率穩定度。嵌入的溫度感測器則有攝氏1度的溫度解析度,並且不會對系統造成額外的負擔。
第二部分則呈現了一個小面積的時域溫度感測器。此溫度感測器以基於熱敏電阻的RC濾波器作為前端,並透過相位域三角積分轉換器進行數位數值之讀取。類比形式的第一級積分器有效的減小了此系統的頻寬內雜訊,而以快閃式類比-數位轉換器實現的量化器及相位域的回授則有助於減小系統非線性度的影響。此晶片以TSMC 90奈米製程實現,核心面積為0.01平方毫米,功耗為33微瓦特,可運作於攝氏-55至125度,並能達到232 fJ·K²的能量效率。
zh_TW
dc.description.abstractReference clock generators and temperature sensors (TSs) are essential components in IoT systems. This thesis explores these systems and proposes an ultra-low-power on-chip reference clock generator and a compact time-domain temperature sensor for IoT applications.
The first work focuses on a 32.768-kHz clock generator with an embedded TS. The proposed circuit employs an RC-based relaxation oscillator, which is calibrated using an MHz-range crystal oscillator (XO). The calibration process utilizes a digital frequency-locked loop (DFLL) and operates with a 0.2% duty cycle to conserve power. The embedded TS extracts temperature information by monitoring the digitally controlled oscillator (DCO) control codes, which are inherently available in the system. Fabricated using the TSMC 90-nm CMOS process, this chip consumes an average power of 339 nW. The clock signal achieves a frequency stability of +25/-63 ppm over a temperature range of -40 to 85 °C. The embedded TS achieves a temperature resolution of 1 °C, adding significant value to the system without incurring additional overhead.
The second work presents a compact time-domain TS. It utilizes a thermistor-based RC filter as the sensing front-end and incorporates a phase-domain delta-sigma modulator (PD-DSM) for digital readout. The analog first-stage integrator effectively reduces the system’s in-band noise. The inclusion of a flash ADC as a quantizer and phase-domain feedback helps eliminate the effects of non-linearity. This chip, also fabricated in the TSMC 90-nm process, has a core area of 0.01 mm² and a power consumption of 33 μW. It operates over a temperature range of -55 to 125 °C, achieving a resolution figure of merit (FoM) of 232 fJ·K².
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-18T16:06:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-18T16:06:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
致謝 iii
摘要 v
Abstract vii
List of Figures xii
List of Tables xvi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Thesis Overview 2
Chapter 2 Review of On-Chip Clock Generators 5
2.1 Introduction 5
2.2 Conventional RC Oscillators 6
2.2.1 Relaxation Oscillator 6
2.2.2 RC-Based Frequency-Locked Loops 7
2.3 On-Chip Calibration Techniques 9
2.3.1 Open-Loop Method 9
2.3.2 DFLL-Based Method 12
2.4 Summary 14
Chapter 3 Design of a Low-Power Clock Generator Embedded with Temperature Sensor 15
3.1 Motivation 15
3.2 System Overview 15
3.3 DFLL-Based Calibration Module 17
3.3.1 DFLL Design 17
3.3.2 Clock- and Power-Gating 18
3.3.3 Robustness of Duty-Cycling 19
3.4 Temperature-Sensing Digitally-Controlled Oscillator 20
3.4.1 Design Consideration 20
3.4.2 Proposed TS-DCO 22
3.4.3 Comparator and Schmitt Trigger 23
3.4.4 IDAC Design 25
3.4.5 TS-DCO Simulation Result 26
3.5 Measurement 27
3.5.1 Chip Photo 27
3.5.2 Test Setup 28
3.5.3 Measurement Results 30
3.5.4 Discussion 34
3.6 Summary 36
Chapter 4 Fundamentals of Resistor-Based Temperature Sensors 39
4.1 Introduction to On-Chip Temperature Sensors 39
4.2 Resistor-Based Temperature-Sensing Front-Ends 43
4.2.1 Wheatstone Bridge 43
4.2.2 RC Filters 46
4.2.3 Summary 50
4.3 Readout Circuits for Time-Domain TS 50
4.3.1 FLL 50
4.3.2 SAR 52
4.3.3 Phase-Domain DSM 53
4.3.4 Summary 54
Chapter 5 Design of a Compact RC-Filter-Based Temperature Sensor with a Phase-Domain Delta-Sigma Modulator 55
5.1 Motivation 55
5.2 System Architecture 56
5.2.1 RC-Filter-Based Sensing and Phase Subtraction 57
5.2.2 Proposed PD-DSM 59
5.2.3 Noise Analysis 62
5.3 Circuit Implementation 65
5.3.1 RC Filter with Leakage Suppression 65
5.3.2 Integrator 67
5.3.3 2-Bit Flash ADC 72
5.3.4 Phase Generator 74
5.4 Measurement 76
5.4.1 Chip Photo 76
5.4.2 Test Setup 77
5.4.3 Measurement Results 78
5.5 Summary 85
Chapter 6 Conclusions and Future Works 87
6.1 Conclusions 87
6.2 Future Works 88
References 90
-
dc.language.isoen-
dc.subject相位域三角積分轉換器zh_TW
dc.subject低工作週期校正zh_TW
dc.subject溫度感測器zh_TW
dc.subject參考時脈產生器zh_TW
dc.subject物聯網應用zh_TW
dc.subject弛張振盪器zh_TW
dc.subjectPhase-Domain Delta-Sigma Modulatoren
dc.subjectIoT Applicationen
dc.subjectReference Clock Generatoren
dc.subjectRelaxation Oscillatoren
dc.subjectDuty-Cycled Calibrationen
dc.subjectTemperature Sensoren
dc.title應用於物聯網裝置之低功耗時脈產生器與溫度感測器zh_TW
dc.titleLow-Power Clock Generator and Temperature Sensors for IoT Applicationsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉深淵;李泰成;許雲翔zh_TW
dc.contributor.oralexamcommitteeShen-Iuan Liu;Tai-Cheng Lee;Yun-Shiang Shuen
dc.subject.keyword物聯網應用,參考時脈產生器,弛張振盪器,低工作週期校正,溫度感測器,相位域三角積分轉換器,zh_TW
dc.subject.keywordIoT Application,Reference Clock Generator,Relaxation Oscillator,Duty-Cycled Calibration,Temperature Sensor,Phase-Domain Delta-Sigma Modulator,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202401615-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-16-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2029-07-15-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved