Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93116
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林國峰zh_TW
dc.contributor.advisorGwo-Fong Linen
dc.contributor.author楊政霖zh_TW
dc.contributor.authorCheng-Lin Yangen
dc.date.accessioned2024-07-17T16:30:02Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-07-15-
dc.identifier.citationChen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), pp. 834-848.https://doi.org/10.1109/TPAMI.2017.2699184
Colgan, C. S., Beck, M., W. & Narayan, S. (2017). Financing Natural Infrastructure for Coastal Flood Damage Reduction. Lloyd’s Tercentenary Research Foundation.https://doi.org/10.7291/V9PN93H3
Erfani, S. M. H., Wu, Z., Wu, X., Wang, S., & Goharian, E. (2022). ATLANTIS: A benchmark for semantic segmentation of waterbody images. Environmental Modelling & Software, 149, 105333.https://doi.org/10.1016/j.envsoft.2022.105333.
Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards, 106, pp. 613–627.https://doi.org/10.1007/s11069-020-04480-0
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. Proceedings of the IEEE international conference on computer vision (ICCV), pp. 2980-2988.https://doi.org/10.1109/ICCV.2017.322
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image detection. Proceedings of the IEEE conference on computer vision and pattern detection (CVPR), pp. 770-778.https://doi.org/10.1109/CVPR.2016.90
Khosla, C., & Saini, B. S. (2020). Enhancing performance of deep learning models with different data augmentation techniques: A survey. 2020 International Conference on Intelligent Engineering and Management (ICIEM), pp. 79-85.https://doi.org/10.1109/ICIEM48762.2020.9160048
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.https://doi.org/10.1145/3065386
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code detection. Neural computation, 1(4), pp. 541-551. https://doi.org/10.1162/neco.1989.1.4.541
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Barret, K. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115.https://doi.org/10.59327/IPCC/AR6-9789291691647
Liang, Y., Li, X., Tsai, B., Chen, Q., & Jafari, N. (2023). V-FloodNet: A video segmentation system for urban flood detection and quantification. Environmental Modelling & Software, 160, 105586.https://doi.org/10.1016/j.envsoft.2022.105586
Lin, Y.-T., Lin, Y.-C., & Han, J.-Y. (2018). Automatic water-level detection using single-camera images with varied poses. Measurement, 127, pp. 167-174.https://doi.org/10.1016/j.measurement.2018.05.100
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.https://doi.org/10.1007/978-3-319-10602-1_48
Lo, S.-W., Wu, J.-H., Chang, J.-Y., Tseng, C.-H., Lin, M.-W., & Lin, F.-P. (2021). Deep sensing of urban waterlogging. IEEE Access, 9, 127185-127203.https://doi.org/10.1109/ACCESS.2021.3111623
Lu, K.-W., Liu, P., Hong, D.-Y., & Wu, J.-J. (2022). Efficient Dual Batch Size Deep Learning for Distributed Parameter Server Systems. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 630-639, https://doi.org/10.1109/COMPSAC54236.2022.00110
Mikołajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. 2018 international interdisciplinary PhD workshop (IIPhDW), pp. 117-122.https://doi.org/10.1109/IIPHDW.2018.8388338
O'Gorman, P. A., & Schneider, T. (2009). The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences, 106(35), 14773-14777. https://doi.org/10.1073/pnas.0907610106
Pally, R., & Samadi, S. (2022). Application of image processing and convolutional neural networks for flood image classification and semantic segmentation. Environmental Modelling & Software, 148, 105285.https://doi.org/10.1016/j.envsoft.2021.105285
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern detection (CVPR), pp. 779-788.https://doi.org/10.1109/CVPR.2016.91
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.https://doi.org/10.48550/arXiv.1506.01497
Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). LabelMe: a database and web-based tool for image annotation. International journal of computer vision, 77, pp. 157-173. https://doi.org/10.1007/s11263-007-0090-8
Sarp, S., Kuzlu, M., Cetin, M., Sazara, C., & Guler, O. (2020). Detecting floodwater on roadways from image data using Mask-R-CNN. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1-6.https://doi.org/10.1109/INISTA49547.2020.9194655
Takase, T., Oyama, S., & Kurihara, M. (2018). Why does large batch training result in poor generalization? A comprehensive explanation and a better strategy from the viewpoint of stochastic optimization. Neural computation, 30(7), 2005-2023.https://doi.org/10.1162/neco_a_01089
Werbos, P. (1974). Backpropagation through time: what it does and how to do it. In Proceedings of the IEEE, 78, 10, pp. 1550-1560.https://doi.org/10.1109/5.58337
Wolff, C., Nikoletopoulos, T., Hinkel, J., & Vafeidis, A. T. (2020). Future urban development exacerbates coastal exposure in the Mediterranean. Scientific reports, 10(1), 14420.https://doi.org/10.1038/s41598-020-70928-9
Yagyu, H., & Kobayashi, N. (2023). Optimizing Amount of Training Data and Classification Accuracy for Newly Measured Motor Imagery Using Fine-Tuning. 2023 International Symposium on Image and Signal Processing and Analysis (ISPA), 2023, pp. 1-6.https://doi.org/10.1109/ISPA58351.2023.10279756
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? Advances in neural information processing systems, 27, pp. 3320-3328.https://doi.org/10.48550/arXiv.1411.1792
Yu, J., Lin, Y., Zhu, Y., Xu, W., Hou, D., Huang, P., & Zhang, G. (2020). Segmentation of river scenes based on water surface reflection mechanism. Applied Sciences, 10(7), 2471. https://doi.org/10.3390/app10072471.
交通部中央氣象署(2023)。氣象資料開放平台。交通部中央氣象署-氣象資料開放平台網址。https://opendata.cwa.gov.tw/dataset/observation?page=3
國家災害防救科技中心(2022)。天氣與氣候監測網。行政法人國家災害防救科技中心-天氣與氣候監測網址。https://watch.ncdr.nat.gov.tw/townwarn/default_v4
經濟部水利署。人工智慧技術於水利防災影像辨識應用計畫(2023)。
臺北市政府水利局(2024)。臺北積水資訊網。行政法人臺北市政府水利局水利工程處-臺北市積水資訊網網址。https://heovcenter.gov.taipei/TpeFloodRecord/
賴建信、林益生與黃振聖(2020)。智慧防汛:淹水感測設備佈建與資料應用。國土及公共治理季刊,8(3),pp 82-93。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93116-
dc.description.abstract當今受到極端氣候影響,天然災害頻傳,各國政府開始調適策略以因應氣候變遷所造成之衝擊。而臺灣位處於西太平洋颱風路徑要衝,根據中央氣象局資料統計,在過去十年間臺灣平均每年約有2.3個颱風經過;若是都市排水系統無法及時宣洩颱風所帶來的大量雨水,造成之道路淹水不僅阻礙交通,對於居民的生命財產亦造成巨大威脅。
本研究以深度學習模型為基礎,搜集臺北市區之街口CCTV (Closed-Circuit Television)影像與網際網路獲取之淹水影像,建立淹水影像辨識模式。本模式能夠準確辨識淹水期間,道路從起淹到退水時的不規則淹水;進而透過本研究所提出之面積轉換模組,將辨識出之淹水範圍轉換成推估淹水面積。水體外觀存在大量變化,在不同地點及不同氣候條件下都可能改變水體外觀;為此,參考過去文獻,證實深度學習模式在辨識圖像方面表現優異,故本研究採用近年新穎之深度學習模型Mask R-CNN (Mask Region-based Convolutional Neural Network)實施訓練;並考慮到建模時之數據集、優化器與預權重等差異性,對於淹水辨識模式準確度有一定影響,因此本研究選用兩種不同優化器,同時比較使用預權重與否及配合不同數據集,最終採用評鑑指標評估模式及最佳模式參數設定。
本研究提出模式使用Mask R-CNN搭配Adam優化器,同時以預權重取代初始權重進行建模,並以2022/08/25臺北市大安區四維路44巷CCTV影像作為案例分析。結果顯示模式在淹水標籤上的評鑑指標Precision、Recall、F1-score和IoU分別為69.5%、91.1%、0.79和81%,表現優良且在模式推估與實際淹水面積趨勢一致,顯示模式所辨識出的淹水範圍與實際淹水範圍高度相關,證明本模式適用於道路街口的CCTV。
本研究使用Mask R-CNN所建立的淹水辨識模式,能自動辨識街口CCTV影像,有效貼近淹水範圍,並透過面積轉換模組即時推估淹水面積。未來可納入水利署災害緊急應變系統,提供管理機關即時掌握是否發生淹水及淹水範圍之參考,希冀降低淹水之生命財產損失。
zh_TW
dc.description.abstractIn the face of extreme climate impacts and frequent natural disasters, governments worldwide are adapting their strategies to cope with the repercussions of climate change. Taiwan, situated in the prime path of typhoons in the Western Pacific, faces an average of approximately 2.3 typhoons annually over the past decade according to the Central Weather Bureau. If urban drainage systems fail to swiftly manage the substantial rainfall brought by typhoons, the resulting flooding not only impedes traffic but also poses significant threats to the lives and property of residents.
This study Employing a deep learning model, this study collects street intersection CCTV footage and flood images from the internet to develop a flood image detection model. This model can accurately identify irregular flooding from the onset to the receding stage, and uses an area conversion module proposed in this research to estimate the inundation area from the recognized flood extent. Given the substantial variation in the appearance of water bodies under different locations and climatic conditions, the previous literature has confirmed the superior performance of deep learning models in image detection. Consequently, this study adopts the novel deep learning model Mask R-CNN (Mask Region-based Convolutional Neural Network) for training. Considering the differences in datasets, optimizers, and pre-weights during modeling, which significantly influence the accuracy of the flood detection model, this study selects two different optimizers, compares the use of pre-weights and various datasets, and finallly uses evaluation metrics to determine the optimal model parameters.
The proposed model uses Mask R-CNN with the Adam optimizer, replacing initial weights with pre-weights during modeling. The CCTV footage from Lane 44, Siwei Road, Da’an District, Taipei City, on August 25, 2022, serves as a case study. The results show that the evaluation metrics for the flood labels—Precision, Recall, F1-score, and IoU—are 69.5%, 91.1%, 0.79, and 81%, respectively, indicating excellent performance. The model's estimated flood extent closely matches the actual flood area, which demonstrates that the recognized flood range is highly correlated with the real situation and proves the model's applicability to CCTV footage at street intersections in Taipei.
The flood detection model developed using Mask R-CNN in this study can automatically identify street intersection CCTV footage and effectively approximates the flood range. Using the area conversion module, it can promptly estimate the flood area in real-time. In the future, this model could be integrated into the Water Resources Agency's disaster emergency response system, and provides management authorities with real-time references on flood occurrence and extent to reduce the loss of life and property due to flooding.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:30:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:30:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract IV
目 次 VI
圖 次 VIII
表 次 X
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.2.1 深度學習模式之演進 3
1.2.2 影像辨識於淹水之應用 4
1.3 論文架構 6
第二章 研究區域 7
2.1 研究區域概述 7
2.2 研究資料 9
第三章 研究方法 11
3.1 Mask R-CNN 11
3.1.1 損失函數 16
3.1.2 優化器 18
第四章 模式建立與應用 20
4.1 研究流程 20
4.2 建模階段 23
4.2.1 淹水影像搜集 23
4.2.2 淹水影像數據庫 24
4.2.3 淹水影像辨識模組 28
4.2.4 淹水面積推估模組 29
4.2.5 淹水即時辨識 32
4.3 評鑑指標 33
第五章 結果與討論 35
5.1 參數率定 35
5.1.1 優化器與預權重率定 35
5.1.2 數據集率定 39
5.2 模式驗證 41
5.2.1 大安區四維路44巷 41
5.2.2 松山區敦化北路155巷 44
5.2.3 大安區長興街 46
5.2.4 網路數據 49
5.2.5 驗證指標 51
5.3 案例分析 55
5.3.1 模式辨識結果 58
5.3.2 淹水面積結果 62
第六章 結論與建議 64
6.1 結論 64
6.2 建議 65
參考文獻 66
附錄A 72
-
dc.language.isozh_TW-
dc.subjectCCTVzh_TW
dc.subjectMask R-CNNzh_TW
dc.subject淹水辨識模式zh_TW
dc.subject淹水zh_TW
dc.subjectfloodingen
dc.subjectdetection modelen
dc.subjectMask R-CNNen
dc.subjectCCTVen
dc.title利用深度學習進行淹水影像及面積辨識zh_TW
dc.titleRecognition of flood image and inundation area using deep learningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李方中;林軒宇;王志煌zh_TW
dc.contributor.oralexamcommitteeFang-Chung Li;Hsuan-Yu Lin;Jhih-Huang Wangen
dc.subject.keyword淹水,淹水辨識模式,Mask R-CNN,CCTV,zh_TW
dc.subject.keywordflooding,detection model,Mask R-CNN,CCTV,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202401770-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-16-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2029-07-15-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved