請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93113完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃世建 | zh_TW |
| dc.contributor.advisor | Shyh-Jiann Hwang | en |
| dc.contributor.author | 劉奕承 | zh_TW |
| dc.contributor.author | Yi-Cheng Liu | en |
| dc.date.accessioned | 2024-07-17T16:29:05Z | - |
| dc.date.available | 2024-07-18 | - |
| dc.date.copyright | 2024-07-17 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-15 | - |
| dc.identifier.citation | Adebar, P., D. Kuchma, and M. P. Collins. (1990). “Strut-and-Tie Models for the Design of Pile Caps: An Experimental Study,” ACI Structural Journal, 87(1), 81-92.
AISC (2016), Specifications for Structural Steel Buildings, ANSI/AISC 360-16, American Institute of Steel Construction, Chicago, IL. ASCE/SEI 41-13, “Seismic Evaluation and Retrofit of Existing Buildings (41-13),” American Society of Civil Engineers, ASCE, Reston, VA, 2014, 554 pp. ASCE/SEI 41-17, “Seismic Evaluation and Retrofit of Existing Buildings (41-17),” American Society of Civil Engineers, ASCE, Reston, VA, 2017, 550 pp. Canbolat, B. A., Parra-Montesinos, G. J., & Wight, J. K. (2005). “Experimental Study on Seismic Behavior of High-Performance Fiber-Reinforced Cement Composite Coupling Beams,” ACI Structural Journal, 102(1), 159. Chen, C.-C., Lin, K.-T., & Chen, Y.-J. (2018). “Behavior and Shear Strength of Steel Shape Reinforced Concrete Deep Beams,” Engineering Structures, 175, 425-435. Clarke, J. L. (1973). Behaviour and Design of Pile Caps with Four Piles. (Report No: 42.489). London: Cement and Concrete Association. Deierlein, G. G. (1988). Design of Moment Connections for Composite Framed Structures: The University of Texas at Austin. Hwang, S.-J., & Lee, H.-J. (2002). “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, 128(12), 1519-1526. Hwang, S.-J., Tsai, R.-J., Lam, W.-K., & Moehle, J. P. (2017). “Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions,” ACI Structural Journal, 114(5), 1239-1249. Hwang, S.-J., Yang, Y.-H., & Li, Y.-A. (2022). “Maximum Shear Strength of Reinforced Concrete Beams,” ACI Structural Journal, 119(2). Lequesne, R., Setkit, M., Parra-Montesinos, G., & Wight, J. K. (2010). “Seismic Detailing and Behavior of Coupling Beams with High-Peformance Fiber-Reinforced Concrete,” Special Publication, 272, 189-204. Li, Y.-A., & Hwang, S.-J. (2017). “Prediction of Lateral Load Displacement Curves for Reinforced Concrete Short Columns Failed in Shear,” Journal of Structural Engineering, 143(2), 04016164. Lim, E., Hwang, S.-J., Cheng, C.-H., & Lin, P.-Y. (2016). “Cyclic Tests of Reinforced Concrete Coupling Beam with Intermediate Span-Depth Ratio,” ACI Structural Journal, 113(3). Lim, E., Hwang, S.-J., Wang, T.-W., & Chang, Y.-H. (2016). “An Investigation on the Seismic Behavior of Deep Reinforced Concrete Coupling Beams,” ACI Structural Journal, 113(2), 217. Lin, K.-T., & Chen, C.-C. (2023). “Shear Strength and Shear Behaviour of H-Beam and Cruciform-Shaped Steel Sections for Concrete-Encased Composite Columns,” Steel and Composite Structures, 47(3), 423. Matsuoka, Y.; Esaki, F.; and Ono, M. (2003). “Effect of Loading Rate on Mechanical Behavior of RC Framed Shear Walls with Opening,” Proceedings of the Japan Concrete Institute, V. 25, No. 2, pp. 601-606. Moehle, J. (2015). Seismic Design of Reinforced Concrete Buildings (1st Edition ed.), New York: McGraw-Hill Education. Mogili, S., & Hwang, S.-J. (2021). “Softened Strut-and-Tie Model for Shear and Flexural Strengths of Reinforced Concrete Pile Caps,” Journal of Structural Engineering, 147(11), 04021169. Naish, D., Fry, A., Klemencic, R., & Wallace, J. (2013). “Reinforced Concrete Coupling Beams-Part I: Testing,” ACI Structural Journal, 110(6), 1057. Ono, M., and Tokuhiro, I. (1992). “A Proposal of Reducing Rate for Strength due to Opening Effect of Reinforced Concrete Framed Shear Walls,” Journal of Structural and Construction Engineering, V. 435, pp. 119-129. Paulay, T., & Priestley, M. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings (Vol. 768): Wiley New York. Sezen, H., & Moehle, J. P. (2006). “Seismic Tests of Concrete Columns with Light Transverse Reinforcement,” ACI Structural Journal, 103(6), 842. Sheikh, T. M. (1987). Moment Connections Between Steel Beams and Concrete Columns: The University of Texas at Austin. Soleman, H. A.(2023)。「近梁底穿孔往負載重行為」。碩士論文,國立臺灣科技大學,營建工程系,台北市。 Tokuda, T.; Ono, M.; and Esaki, F. (2000). “Hysteresis Response Characteristic of RC Shear Wall Subjected to Lateral Load at Constant Rate,” Proceedings of the Japan Concrete Institute, V. 22, No. 3, pp.445-450. Tsai, R.-J., Hsu, Y.-C., & Hwang, S.-J. (2021). “Prediction of Lateral Load-Displacement Curve of Reinforced Concrete Walls with Openings under Shear Failure,” ACI Structural Journal, 118(5). Weng, P.-W., Li, Y.-A., Tu, Y.-S., & Hwang, S.-J. (2017). “Prediction of the Lateral Load-Displacement Curves for Reinforced Concrete Squat Walls Failing in Shear,” Journal of Structural Engineering, 143(10), 04017141. Yamaguchi, K.; Ono, M.; and Esaki, F. (2001). “Effect of Loading Rate on Mechanical Behavior of RC Framed Shear Walls with Opening,” Proceedings, Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, Kanto, Japan, pp.561-562. Yeh, R.-L., Tseng, C.-C., & Hwang, S.-J. (2018). “Shear Strength of Reinforced Concrete Vertical Wall Segments under Seismic Loading,” ACI Structural Journal, 115(5), 1485-1494. Zhang, L.-X. B., & Hsu, T. T. (1998). “Behavior and Analysis of 100 MPa Concrete Membrane Elements,” Journal of Structural Engineering, 124(1), 24-34. 內政部國土管理署(2010)。「鋼構造建築物鋼結構設計技術規範」。臺北,內政部國土管理署。 內政部國土管理署(2011)。「鋼骨鋼筋混凝土設計規範與解說」。臺北,內政部國土管理署。 內政部國土管理署(2023)。「建築物混凝土結構設計規範」。臺北,內政部國土管理署。 何胤頤(2023)。「具圓形穿孔RC梁之剪力容量計算公式研究」。碩士論文,國立臺灣科技大學,營建工程系,台北市。 徐侑呈(2018)。「開孔鋼筋混凝土剪力牆側力位移曲線之研究」。碩士論文,國立臺灣大學,土木工程學研究所,台北市。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93113 | - |
| dc.description.abstract | 本研究探討軟化壓拉桿模型於實務上預測及設計鋼筋混凝土剪力強度的應用。實務上常因為設計問題,造成鋼筋混凝土構件產生局部的應力集中現象,並可能造成剪力破壞。本研究針對以下幾個常見的問題進行深入研究。
工地常須對梁穿孔,以便於管線的配置,然而塑鉸區(2倍梁深)不得穿孔的規定,已造成困擾。本研究利用開孔剪力牆模型模擬開孔梁之行為,建議可於1倍至2倍梁深區域內開孔,但開孔大小必須進一步限制,並於開孔周圍增加鋼筋,以確保開孔不會影響梁的剪力強度。 混合結構日漸盛行,鋼骨鋼筋混凝土構造物的比例也逐漸上升,預測其構件的剪力強度是一大挑戰。本研究利用軟化壓拉桿模型,提出一套適用於鋼骨鋼筋混凝土構件剪力強度的預測方法,並建議在設計時,考慮鋼骨和鋼筋混凝土之間的複合效應,以提高預測的準確性。 隨著都市更新的推動,舊的高樓若須拆除重建,而新的建築往往需要重複利用舊建築的基樁與筏基板,而舊樁與新柱之錯位會使基礎板產生極大的需求剪力。本研究利用樁帽剪力強度模型來保守計算基礎板之設計剪力,並提出相關的配筋細節,以提高基礎板之安全性。 非結構牆的設置,常常會造成短梁的發生,引致高剪力作用,其設計造成困擾,本研究建議可以連接梁設計之。在設計地震作用下,連接梁除了滿足剪力設計外,同時也要避免過度設計彎矩強度,以免梁端產生更大的彎矩而增加剪力需求。在高撓曲需求的設計下,軟化壓拉桿模型能夠減少對角鋼筋量,以便施工;低撓曲鋼筋量設計時,須注意混凝土可能提早擠碎,造成不可預期的破壞。 本研究顯示,軟化壓拉桿模型能有效提升鋼筋混凝土剪力強度預測的準確性,並為工程實務提供可靠的設計依據。 | zh_TW |
| dc.description.abstract | This study investigates the application of the softened strut-and-tie model in the practical prediction and design of shear strength in reinforced concrete. In practice, design issues often lead to local stress concentrations in reinforced concrete components, potentially causing shear failures. This research delves into several common problems.
Construction sites often need to perforate beams for pipeline arrangements. However, the regulation prohibiting openings within the plastic hinge zone (twice the beam depth) has caused issues. This study uses the shear wall with opening model to simulate the behavior of beams with opening and suggests that opening can be made within one to two times the beam depth. However, the size of the opening must be further restricted, and additional reinforcement should be placed around the opening to ensure it do not affect the shear strength of the beams. As hybrid structures become more prevalent, the proportion of steel reinforced concrete (SRC) structures is also increasing. Predicting the shear strength of SRC components is a significant challenge. This study uses the softened strut-and-tie model to propose a method for predicting the shear strength of SRC members and recommends considering the composite effects between steel and reinforced concrete during design to enhance prediction accuracy. With the promotion of urban renewal, if old high-rise buildings need to be demolished and rebuilt, the new buildings often need to reuse the old building piles and raft foundation slabs. The dislocated of the old piles and the new columns can result in significant shear demands on the foundation slabs. This study uses the pile cap shear strength model to conservatively calculate the design shear strength of the foundation slabs and proposes related reinforcement details to improve the safety of the foundation slabs. The placement of non-structural walls often leads to the creation of short beams, resulting in high shear forces, posing design challenges. This study recommends applying coupling beam design principles. Under design basis earthquake, coupling beams should not only meet shear design requirements but also avoid over-designing moment strength to prevent excessive moments at the beam ends, which would increase shear demand. For designs with high flexural demands, the softened strut-and-tie model can reduce the amount of diagonal reinforcement, facilitating construction. For low flexural reinforcement designs, early concrete crushing should be monitored to prevent unexpected failures. This study shows that the softened strut-and-tie model effectively enhances the accuracy of shear strength predictions in reinforced concrete, providing reliable design bases for engineering practice. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:29:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-17T16:29:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 摘要 v Abstract vii 目次 xi 表次 xiv 圖次 xv 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容與方法 2 第二章 文獻回顧 5 2.1 軟化壓拉桿模型 5 2.1.1 Hwang and Lee (2002) 5 2.1.2 Hwang, Tsai, Lam, and Moehle (2017) 7 2.2 梁塑鉸區開孔文獻回顧 9 2.2.1 低矮牆側力位移曲線 9 2.2.2 開孔牆側力位移曲線 12 2.2.3 梁塑鉸區開孔實驗 15 2.3 鋼骨鋼筋混凝土剪力強度文獻回顧 16 2.3.1 AISC 360-16 (2016) 16 2.3.2 SRC深梁實驗 17 2.3.3 SRC短柱實驗 17 2.3.4 RCS梁柱接頭實驗 17 2.4 樁柱錯位筏基板擊穿剪力強度文獻回顧 18 2.4.1 樁帽剪力與撓曲強度評估模型 18 2.5 連接梁剪力設計文獻回顧 21 2.5.1 土木110-112規範對連接梁之規定 21 2.5.2 連接梁之軟化壓拉桿模型 22 第三章 梁塑鉸區開孔剪力強度預測及設計方法 25 3.1 緣起 25 3.2 技術依據 26 3.2.1 關鍵桿件剪力強度 26 3.2.2 關鍵桿件及開孔梁之側力位移曲線 28 3.3 分析模型驗證 29 3.4 梁開孔設計之建議 30 3.4.1 案例探討 31 3.4.2 建議之設計方式 34 3.5 工程上之應用 34 3.5.1 案例探討 35 3.5.2 建議之梁開孔設計方式 36 第四章 鋼骨鋼筋混凝土剪力強度預測 37 4.1 緣起 37 4.2 技術依據 37 4.3 分析模型之驗證 39 4.4 應用 40 4.5 結論 42 第五章 樁柱錯位筏基板擊穿剪力強度 43 5.1 緣起 43 5.2 技術依據 44 5.3 工程上之應用 45 5.4 結論與建議 47 第六章 連接梁剪力強度設計 49 6.1 緣起 49 6.2 技術依據 49 6.3 工程上之應用 51 6.3.1 DBE設計 51 6.3.2 MCE設計 54 6.3.3 討論與建議 56 第七章 結論與建議 59 7.1 結論與建議 59 7.2 未來研究展望 60 參考文獻 61 附錄 A 塑鉸區開孔梁算例 159 A.1 Soleman (2023) S3試體算例 159 A.2 何胤頤 (2023) 1S0Q試體算例 166 A.3 建議設計方法於案例三之分析(1/4倍梁深、額外增加箍筋) 173 A.4 結構工程技師公會建議設計方法於案例三之分析(1/4倍梁深、額外增加箍筋) 181 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 剪力強度 | zh_TW |
| dc.subject | 軟化壓拉桿模型 | zh_TW |
| dc.subject | 連接梁 | zh_TW |
| dc.subject | 基礎板 | zh_TW |
| dc.subject | 塑鉸區開孔梁 | zh_TW |
| dc.subject | 鋼骨鋼筋混凝土 | zh_TW |
| dc.subject | 鋼筋混凝土 | zh_TW |
| dc.subject | shear strength | en |
| dc.subject | beam with opening in plastic hinge region | en |
| dc.subject | coupling beam | en |
| dc.subject | foundation slab | en |
| dc.subject | reinforced concrete | en |
| dc.subject | steel reinforced concrete | en |
| dc.subject | softened strut-and-tie model | en |
| dc.title | 軟化壓拉桿模型在建築結構剪力設計上之應用研究 | zh_TW |
| dc.title | Application of Softened Strut-and-Tie Model in Shear Design of Building Structures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭敏元;黃尹男 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Yuan Cheng;Yin-Nan Huang | en |
| dc.subject.keyword | 剪力強度,軟化壓拉桿模型,連接梁,基礎板,塑鉸區開孔梁,鋼骨鋼筋混凝土,鋼筋混凝土, | zh_TW |
| dc.subject.keyword | beam with opening in plastic hinge region,coupling beam,foundation slab,reinforced concrete,shear strength,softened strut-and-tie model,steel reinforced concrete, | en |
| dc.relation.page | 188 | - |
| dc.identifier.doi | 10.6342/NTU202401648 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 15.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
