Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93110
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛雁冰zh_TW
dc.contributor.advisorYen-Ping Hsuehen
dc.contributor.author林子翔zh_TW
dc.contributor.authorTzu-Hsiang Linen
dc.date.accessioned2024-07-17T16:28:11Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-07-10-
dc.identifier.citation1.         Morimoto, R.I. (1998). Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12, 3788-3796. 10.1101/gad.12.24.3788.
2.         Hislop, A.D., Taylor, G.S., Sauce, D., and Rickinson, A.B. (2007). Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25, 587-617. 10.1146/annurev.immunol.25.022106.141553.
3.         Clarke, C.R., Timko, M.P., Yoder, J.I., Axtell, M.J., and Westwood, J.H. (2019). Molecular Dialog Between Parasitic Plants and Their Hosts. Annu Rev Phytopathol 57, 279-299. 10.1146/annurev-phyto-082718-100043.
4.         Wilson, A.M., Hubel, T.Y., Wilshin, S.D., Lowe, J.C., Lorenc, M., Dewhirst, O.P., Bartlam-Brooks, H.L.A., Diack, R., Bennitt, E., Golabek, K.A., et al. (2018). Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala. Nature 554, 183-188. 10.1038/nature25479.
5.         Baugh, L.R., and Hu, P.J. (2020). Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 216, 837-878. 10.1534/genetics.120.303565.
6.         Skelhorn, J. (2018). Avoiding death by feigning death. Curr Biol 28, R1135-R1136. 10.1016/j.cub.2018.07.070.
7.         Pribadi, A., Rieger, M.A., Rosales, K., Reddy, K.C., and Chalasani, S.H. (2023). Dopamine signaling regulates predator-driven changes in Caenorhabditis elegans' egg laying behavior. Elife 12. 10.7554/eLife.83957.
8.         Stoks, R., McPeek, M.A., and Mitchell, J.L. (2003). Evolution of prey behavior in response to changes in predation regime: damselflies in fish and dragonfly lakes. Evolution 57, 574-585. 10.1554/0014-3820(2003)057[0574:EOPBIR]2.0.CO;2.
9.         De Franceschi, G., Vivattanasarn, T., Saleem, A.B., and Solomon, S.G. (2016). Vision Guides Selection of Freeze or Flight Defense Strategies in Mice. Curr Biol 26, 2150-2154. 10.1016/j.cub.2016.06.006.
10.       Nigon, V.M., and Félix, M.A. (2017). History of research on C. elegans and other free-living nematodes as model organisms. WormBook 2017, 1-84. 10.1895/wormbook.1.181.1.
11.       Cook, S.J., Jarrell, T.A., Brittin, C.A., Wang, Y., Bloniarz, A.E., Yakovlev, M.A., Nguyen, K.C.Q., Tang, L.T., Bayer, E.A., Duerr, J.S., et al. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571, 63-71. 10.1038/s41586-019-1352-7.
12.       Frezal, L., and Felix, M.A. (2015). C. elegans outside the Petri dish. Elife 4. 10.7554/eLife.05849.
13.       Hill, A.J., Mansfield, R., Lopez, J.M., Raizen, D.M., and Van Buskirk, C. (2014). Cellular stress induces a protective sleep-like state in C. elegans. Curr Biol 24, 2399-2405. 10.1016/j.cub.2014.08.040.
14.       Turek, M., Lewandrowski, I., and Bringmann, H. (2013). An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans. Curr Biol 23, 2215-2223. 10.1016/j.cub.2013.09.028.
15.       Nelson, M.D., Lee, K.H., Churgin, M.A., Hill, A.J., Van Buskirk, C., Fang-Yen, C., and Raizen, D.M. (2014). FMRFamide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans. Curr Biol 24, 2406-2410. 10.1016/j.cub.2014.08.037.
16.       Nath, R.D., Chow, E.S., Wang, H., Schwarz, E.M., and Sternberg, P.W. (2016). C. elegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides. Curr Biol 26, 2446-2455. 10.1016/j.cub.2016.07.048.
17.       Van Buskirk, C., and Sternberg, P.W. (2007). Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat Neurosci 10, 1300-1307. 10.1038/nn1981.
18.       Konietzka, J., Fritz, M., Spiri, S., McWhirter, R., Leha, A., Palumbos, S., Costa, W.S., Oranth, A., Gottschalk, A., Miller, D.M., 3rd, et al. (2020). Epidermal Growth Factor Signaling Promotes Sleep through a Combined Series and Parallel Neural Circuit. Curr Biol 30, 1-16 e13. 10.1016/j.cub.2019.10.048.
19.       Turek, M., Besseling, J., Spies, J.P., Konig, S., and Bringmann, H. (2016). Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep. Elife 5. 10.7554/eLife.12499.
20.       Sinner, M.P., Masurat, F., Ewbank, J.J., Pujol, N., and Bringmann, H. (2021). Innate Immunity Promotes Sleep through Epidermal Antimicrobial Peptides. Curr Biol 31, 564-577 e512. 10.1016/j.cub.2020.10.076.
21.       Toda, H., Williams, J.A., Gulledge, M., and Sehgal, A. (2019). A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila. Science 363, 509-515. 10.1126/science.aat1650.
22.       Yu, X., Zhao, G., Wang, D., Wang, S., Li, R., Li, A., Wang, H., Nollet, M., Chun, Y.Y., Zhao, T., et al. (2022). A specific circuit in the midbrain detects stress and induces restorative sleep. Science 377, 63-72. 10.1126/science.abn0853.
23.       Lee, D.A., Liu, J., Hong, Y., Lane, J.M., Hill, A.J., Hou, S.L., Wang, H., Oikonomou, G., Pham, U., Engle, J., et al. (2019). Evolutionarily conserved regulation of sleep by epidermal growth factor receptor signaling. Sci Adv 5, eaax4249. 10.1126/sciadv.aax4249.
24.       Kuo, T.H., and Williams, J.A. (2014). Increased sleep promotes survival during a bacterial infection in Drosophila. Sleep 37, 1077-1086, 1086A-1086D. 10.5665/sleep.3764.
25.       Schmidt, A.R., Dorfelt, H., and Perrichot, V. (2007). Carnivorous fungi from Cretaceous amber. Science 318, 1743. 10.1126/science.1149947.
26.       Yang, C.T., de Ulzurrun, G.V.D., Goncalves, A.P., Lin, H.C., Chang, C.W., Huang, T.Y., Chen, S.A., Lai, C.K., Tsai, I.J., Schroeder, F.C., et al. (2020). Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. P Natl Acad Sci USA 117, 6762-6770. 10.1073/pnas.1919726117.
27.       de Ulzurrun, G.V.D., and Hsueh, Y.P. (2018). Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin. Appl Microbiol Biot 102, 3939-3949. 10.1007/s00253-018-8897-5.
28.       Hsueh, Y.P., Gronquist, M.R., Schwarz, E.M., Nath, R.D., Lee, C.H., Gharib, S., Schroeder, F.C., and Sternberg, P.W. (2017). Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. Elife 6. 10.7554/eLife.20023.
29.       Hsueh, Y.P., Mahanti, P., Schroeder, F.C., and Sternberg, P.W. (2013). Nematode-trapping fungi eavesdrop on nematode pheromones. Curr Biol 23, 83-86. 10.1016/j.cub.2012.11.035.
30.       Kuo, C.-Y., Tay, R.J., Lin, H.-C., Juan, S.-C., Vidal-Diez de Ulzurrun, G., Chang, Y.-C., Hoki, J., Schroeder, F.C., and Hsueh, Y.-P. (2024). The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors. Nature Microbiology. 10.1038/s41564-024-01679-w.
31.       Chen, S.-A., Lin, H.-C., Schroeder, F.C., and Hsueh, Y.-P. (2020). Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway. Genetics 217. 10.1093/genetics/iyaa008.
32.       Chen, S.-A., Lin, H.-C., and Hsueh, Y.-P. (2022). The cAMP-PKA pathway regulates prey sensing and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. G3 Genes|Genomes|Genetics 12. 10.1093/g3journal/jkac217.
33.       Hilliard, M.A., Bargmann, C.I., and Bazzicalupo, P. (2002). C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol 12, 730-734. 10.1016/s0960-9822(02)00813-8.
34.       Van Buskirk, C., and Sternberg, P.W. (2010). Paired and LIM class homeodomain proteins coordinate differentiation of the C. elegans ALA neuron. Development 137, 2065-2074. 10.1242/dev.040881.
35.       Gonzales, D.L., Zhou, J., Fan, B., and Robinson, J.T. (2019). A microfluidic-induced C. elegans sleep state. Nat Commun 10, 5035. 10.1038/s41467-019-13008-5.
36.       Offenburger, S.L., Ho, X.Y., Tachie-Menson, T., Coakley, S., Hilliard, M.A., and Gartner, A. (2018). 6-OHDA-induced dopaminergic neurodegeneration in Caenorhabditis elegans is promoted by the engulfment pathway and inhibited by the transthyretin-related protein TTR-33. PLoS Genet 14, e1007125. 10.1371/journal.pgen.1007125.
37.       McColl, G., Rogers, A.N., Alavez, S., Hubbard, A.E., Melov, S., Link, C.D., Bush, A.I., Kapahi, P., and Lithgow, G.J. (2010). Insulin-like signaling determines survival during stress via posttranscriptional mechanisms in C. elegans. Cell Metab 12, 260-272. 10.1016/j.cmet.2010.08.004.
38.       Miller, E.V., Grandi, L.N., Giannini, J.A., Robinson, J.D., and Powell, J.R. (2015). The Conserved G-Protein Coupled Receptor FSHR-1 Regulates Protective Host Responses to Infection and Oxidative Stress. PLoS One 10, e0137403. 10.1371/journal.pone.0137403.
39.       Rohlfing, A.K., Miteva, Y., Hannenhalli, S., and Lamitina, T. (2010). Genetic and physiological activation of osmosensitive gene expression mimics transcriptional signatures of pathogen infection in C. elegans. PLoS One 5, e9010. 10.1371/journal.pone.0009010.
40.       Uno, M., Honjoh, S., Matsuda, M., Hoshikawa, H., Kishimoto, S., Yamamoto, T., Ebisuya, M., Yamamoto, T., Matsumoto, K., and Nishida, E. (2013). A fasting-responsive signaling pathway that extends life span in C. elegans. Cell Rep 3, 79-91. 10.1016/j.celrep.2012.12.018.
41.       Egge, N., Arneaud, S.L.B., Fonseca, R.S., Zuurbier, K.R., McClendon, J., and Douglas, P.M. (2021). Trauma-induced regulation of VHP-1 modulates the cellular response to mechanical stress. Nat Commun 12, 1484. 10.1038/s41467-021-21611-8.
42.       Bhatla, N., and Horvitz, H.R. (2015). Light and hydrogen peroxide inhibit C. elegans Feeding through gustatory receptor orthologs and pharyngeal neurons. Neuron 85, 804-818. 10.1016/j.neuron.2014.12.061.
43.       Humphreys, R.K., and Ruxton, G.D. (2018). A review of thanatosis (death feigning) as an anti-predator behaviour. Behavioral Ecology and Sociobiology 72, 22. 10.1007/s00265-017-2436-8.
44.       Candolin, U. (1998). Reproduction under predation risk and the trade–off between current and future reproduction in the threespine stickleback. Proceedings of the Royal Society of London. Series B: Biological Sciences 265, 1171-1175.
45.       Kreuzwieser, J., Scheerer, U., Kruse, J., Burzlaff, T., Honsel, A., Alfarraj, S., Georgiev, P., Schnitzler, J.P., Ghirardo, A., Kreuzer, I., et al. (2014). The Venus flytrap attracts insects by the release of volatile organic compounds. J Exp Bot 65, 755-766. 10.1093/jxb/ert455.
46.       Lin, H.-C., de Ulzurrun, G.V.-D., Chen, S.-A., Yang, C.-T., Tay, R.J., Iizuka, T., Huang, T.-Y., Kuo, C.-Y., Gonçalves, A.P., Lin, S.-Y., et al. (2023). Key processes required for the different stages of fungal carnivory by a nematode-trapping fungus. PLOS Biology 21, e3002400. 10.1371/journal.pbio.3002400.
47.       Wernet, N., Wernet, V., and Fischer, R. (2021). The small-secreted cysteine-rich protein CyrA is a virulence factor participating in the attack of Caenorhabditis elegans by Duddingtonia flagrans. PLoS Pathog 17, e1010028. 10.1371/journal.ppat.1010028.
48.       Pop, M., Klemke, A.-L., Seidler, L., Wernet, N., Steudel, P.L., Baust, V., Wohlmann, E., and Fischer, R. (2024). Caenorhabditis elegans neuropeptide NLP-27 enhances neurodegeneration and paralysis in an opioid-like manner during fungal infection. iScience. 10.1016/j.isci.2024.109484.
49.       Goodman, M.B., and Sengupta, P. (2019). How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 212, 25-51. 10.1534/genetics.118.300241.
50.       Goodman, M.B. (2006). Mechanosensation. WormBook, 1-14. 10.1895/wormbook.1.62.1.
51.       Maguire, S.M., Clark, C.M., Nunnari, J., Pirri, J.K., and Alkema, M.J. (2011). The C. elegans touch response facilitates escape from predacious fungi. Curr Biol 21, 1326-1330. 10.1016/j.cub.2011.06.063.
52.       Wu, Y., Masurat, F., Preis, J., and Bringmann, H. (2018). Sleep Counteracts Aging Phenotypes to Survive Starvation-Induced Developmental Arrest in C. elegans. Curr Biol 28, 3610-3624 e3618. 10.1016/j.cub.2018.10.009.
53.       Lee, C.H., Chang, H.W., Yang, C.T., Wali, N., Shie, J.J., and Hsueh, Y.P. (2020). Sensory cilia as the Achilles heel of nematodes when attacked by carnivorous mushrooms. Proc Natl Acad Sci U S A 117, 6014-6022. 10.1073/pnas.1918473117.
54.       Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676-682. 10.1038/nmeth.2019.
55.       Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. 10.1093/bioinformatics/bts635.
56.       Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323. 10.1186/1471-2105-12-323.
57.       Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140. 10.1093/bioinformatics/btp616.
58.       Wang, H., Park, H., Liu, J., and Sternberg, P.W. (2018). An Efficient Genome Editing Strategy To Generate Putative Null Mutants in Caenorhabditis elegans Using CRISPR/Cas9. G3 (Bethesda) 8, 3607-3616. 10.1534/g3.118.200662.
59.       Gonzales-Moreno, C., Fernandez-Hubeid, L.E., Holgado, A., and Virgolini, M.B. (2023). Low-dose N-acetyl cysteine prevents paraquat-induced mortality in Caenorhabditis elegans. MicroPubl Biol 2023. 10.17912/micropub.biology.000815.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93110-
dc.description.abstract獵食行為可以引起獵物在行為上的改變,然而獵物面對獵食壓力的分子和神經機制機理仍不清楚。在本研究中,我們探討了模式線蟲Caenorhabditis elegans(秀麗隱桿線蟲)對線蟲捕捉菌Arthrobotrys oligospora(寡孢子節叢孢菌)獵食時的反應。我們發現A. oligospora的陷阱捕捉會誘導獵物線蟲C. elegans進入行為靜止狀態,顯現咽部泵動和身體運動的快速停止。對被A. oligospora捕獲的C. elegans進行鈣離子影像紀錄顯示靜止狀態的發生是由促進睡眠的神經元 ALA 和 RIS 的活化所調控。利用神經發育的突變株分析證實了 ALA 神經元對於抑制咽部泵動至關重要,而 ALA 和 RIS 神經元皆參與於停止運動。此外,被A. oligospora陷阱捕捉的C. elegans的轉錄組分析揭示了防禦和免疫反應基因表現的上升,包括抗菌肽、與代謝異源物質有關的基因以及p38 MAPK途徑。最後,我們論證了A. oligospora捕獲時需要機械感覺神經元來抑制咽部泵動和調控轉錄組變化。這些發現表明,線蟲捕捉菌陷阱造成的物理刺激誘發了機械感覺依賴性的機械壓力,導致了C. elegans壓力誘導的行為靜止和防禦免疫基因的上升。我們推測陷阱誘導的行為靜止可能是一種由固著性獵食者用來在演化軍備競賽中取得生存優勢的獵食策略。zh_TW
dc.description.abstractPredation can induce behavioral changes in prey, yet the molecular and neuronal mechanisms underlying prey responses to predation stress remain poorly understood. Here, we investigated the response of the nematode Caenorhabditis elegans to predation by the nematode-trapping fungus, Arthrobotrys oligospora. We found that A. oligospora predation induced a quiescent state in C. elegans, leading to the rapid cessation of pharyngeal pumping and body movement. Calcium imaging of A. oligospora-trapped C. elegans revealed that the quiescent state was regulated by the activation of the sleep-promoting neurons, ALA and RIS. Genetic analyses demonstrated that ALA neurons were essential for pharyngeal pumping inhibition, whereas both ALA and RIS neurons contributed to movement cessation. Furthermore, transcriptomic analysis in A. oligospora-trapped C. elegans revealed the upregulation of defense and immune response genes, including antimicrobial peptides, xenobiotic metabolism genes, and the p38 MAPK pathway. Lastly, we demonstrated that mechanosensory neurons were required for pumping inhibition and transcriptomic regulation upon A. oligospora trapping. These findings suggest that physical constraints imposed by fungal traps trigger mechanosensory-dependent mechanical stress, resulting in stress-induced quiescence and the upregulation of defense genes in C. elegans. We posit that trap-induced quiescence is a predation strategy used by sessile predators to prevail in the evolutionary arms race.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:28:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:28:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
目次 v
圖次 vii
表次 viii
Chapter 1. Introduction 1
Chapter 2. Results 5
2.1 A. oligospora predation induces behavioral quiescence in C. elegans 5
2.2 The sleep-promoting neurons ALA and RIS are activated in response to A. oligospora trapping 6
2.3 The sleep-promoting neurons regulate pharyngeal pumping and movement inhibitions 8
2.4 Mechanosensory neurons regulate trapping-induced pharyngeal pumping 9
2.5 A. oligospora trapping induces up-regulation of defense and immune response genes 11
2.6 Trapping-induced transcriptomic regulations are highly correlated with mechanical stress 13
2.7 Reactive oxygen species and epidermal growth factor receptor signaling pathways for trapping-induced sleep 14
Chapter 3. Discussion 17
Chapter 4. Materials and Methods 35
4.1 Key resources table 35
4.2 Experimental model and study participant details 39
4.3 Arthrobotrys oligospora trap induction 39
4.4 Quantifying pharyngeal pumping 40
4.5 Tracking head movements 40
4.6 Head-drop avoidance assay 41
4.7 Neuronal calcium imaging 41
4.8 WormGlu physical restriction 42
4.9 RNA-seq transcriptomic analysis 42
4.10 Cross-correlation analysis 43
4.11 CRISPR-Cas9 knockout 43
4.12 ROS in vivo imaging 44
4.13 Antioxidant NAC treatment 44
4.14 Quantification and Statistical Analysis 45
Acknowledgments 45
References 46
-
dc.language.isoen-
dc.subject寡孢子節叢孢菌zh_TW
dc.subject機械感覺zh_TW
dc.subject獵食者—獵物交互作用zh_TW
dc.subjectRNA定序zh_TW
dc.subject線蟲捕捉菌zh_TW
dc.subject獵食者誘導靜止zh_TW
dc.subject秀麗隱桿線蟲zh_TW
dc.subject睡眠促進神經元zh_TW
dc.subjectRNA-seqen
dc.subjectNematode-trapping fungien
dc.subjectmechanosensationen
dc.subjectsleep-promoting neuronen
dc.subjectpredator-induced quiescenceen
dc.subjectC. elegansen
dc.subjectA. oligosporaen
dc.subjectpredator-prey interactionsen
dc.title線蟲捕捉菌的獵食行為誘導秀麗隱桿線蟲的機械感覺依賴行為靜止zh_TW
dc.titlePredation by nematode-trapping fungus triggers mechanosensory-dependent quiescence in C. elegansen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳玉威;潘俊良zh_TW
dc.contributor.oralexamcommitteeYu-Wei Wu;Chun-Liang Panen
dc.subject.keyword線蟲捕捉菌,寡孢子節叢孢菌,秀麗隱桿線蟲,獵食者誘導靜止,睡眠促進神經元,機械感覺,獵食者—獵物交互作用,RNA定序,zh_TW
dc.subject.keywordNematode-trapping fungi,A. oligospora,C. elegans,predator-induced quiescence,sleep-promoting neuron,mechanosensation,predator-prey interactions,RNA-seq,en
dc.relation.page49-
dc.identifier.doi10.6342/NTU202400924-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-11-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept基因體與系統生物學學位學程-
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf10 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved