Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93103
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧孟明zh_TW
dc.contributor.advisorMong-Ming Luen
dc.contributor.author陳柏嘉zh_TW
dc.contributor.authorPo-Chia Chenen
dc.date.accessioned2024-07-17T16:26:01Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-06-27-
dc.identifier.citationAmemiya, A., and K. Sato, 2020: Characterizing quasi-biweekly variability of the Asian monsoon anticyclone using potential vorticity and large-scale geopotential height field. Atmos Chem Phys, 20, 13857–13876, https://doi.org/10.5194/acp-20-13857-2020.
Ding, Q., and B. Wang, 2005: Circumglobal Teleconnection in the Northern Hemisphere Summer*. J Clim, 18, 3483–3505, https://doi.org/10.1175/JCLI3473.1.
Duchon, C. E., 1979: Lanczos Filtering in One and Two Dimensions. Journal of Applied Meteorology, 18, 1016–1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.
ENOMOTO, T., 2004: Interannual Variability of the Bonin High Associated with the Propagation of Rossby Waves along the Asian Jet. Journal of the Meteorological Society of Japan. Ser. II, 82, 1019–1034, https://doi.org/10.2151/jmsj.2004.1019.
Hong, X., R. Lu, and S. Li, 2018: Differences in the Silk Road Pattern and Its Relationship to the North Atlantic Oscillation between Early and Late Summers. J Clim, 31, 9283–9292, https://doi.org/10.1175/JCLI-D-18-0283.1.
Hoskins, B. J., and T. Ambrizzi, 1993: Rossby Wave Propagation on a Realistic Longitudinally Varying Flow. J Atmos Sci, 50, 1661–1671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.
Hsu, C. J., and R. A. Plumb, 2000: Nonaxisymmetric Thermally Driven Circulations and Upper-Tropospheric Monsoon Dynamics. J Atmos Sci, 57, 1255–1276, https://doi.org/10.1175/1520-0469(2000)057<1255:NTDCAU>2.0.CO;2.
KOSAKA, Y., H. NAKAMURA, M. WATANABE, and M. KIMOTO, 2009: Analysis on the Dynamics of a Wave-like Teleconnection Pattern along the Summertime Asian Jet Based on a Reanalysis Dataset and Climate Model Simulations. Journal of the Meteorological Society of Japan. Ser. II, 87, 561–580, https://doi.org/10.2151/jmsj.87.561.
Liu, B., G. Wu, J. Mao, and J. He, 2013: Genesis of the South Asian High and Its Impact on the Asian Summer Monsoon Onset. J Clim, 26, 2976–2991, https://doi.org/10.1175/JCLI-D-12-00286.1.
Popovic, J. M., and R. A. Plumb, 2001: Eddy Shedding from the Upper-Tropospheric Asian Monsoon Anticyclone. J Atmos Sci, 58, 93–104, https://doi.org/10.1175/1520-0469(2001)058<0093:ESFTUT>2.0.CO;2.
Ren, X., D. Yang, and X. Q. Yang, 2015: Characteristics and mechanisms of the subseasonal eastward extension of the South Asian high. J Clim, 28, 6799–6822, https://doi.org/10.1175/JCLI-D-14-00682.1.
Torrence, C., and G. P. Compo, 1998: A Practical Guide to Wavelet Analysis. Bull Am Meteorol Soc, 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
Wei, W., R. Zhang, M. Wen, B.-J. Kim, and J.-C. Nam, 2015: Interannual Variation of the South Asian High and Its Relation with Indian and East Asian Summer Monsoon Rainfall. J Clim, 28, 2623–2634, https://doi.org/10.1175/JCLI-D-14-00454.1.
——, ——, ——, S. Yang, and W. Li, 2019a: Dynamic effect of the South Asian high on the interannual zonal extension of the western North Pacific subtropical high. International Journal of Climatology, 39, 5367–5379, https://doi.org/10.1002/joc.6160.
——, ——, S. Yang, W. Li, and M. Wen, 2019b: Quasi‐Biweekly Oscillation of the South Asian High and Its Role in Connecting the Indian and East Asian Summer Rainfalls. Geophys Res Lett, 46, 14742–14750, https://doi.org/10.1029/2019GL086180.
Yang, J., Q. Bao, B. Wang, H. He, M. Gao, and D. Gong, 2017: Characterizing two types of transient intraseasonal oscillations in the Eastern Tibetan Plateau summer rainfall. Clim Dyn, 48, 1749–1768, https://doi.org/10.1007/s00382-016-3170-z.
Yang, S., and T. Li, 2016: Zonal shift of the South Asian High on the subseasonal time‐scale and its relation to the summer rainfall anomaly in China. Quarterly Journal of the Royal Meteorological Society, 142, 2324–2335, https://doi.org/10.1002/qj.2826.
Zhang, D., Y. Huang, B. Zhou, and H. Wang, 2021: Is There Interdecadal Variation in the South Asian High? J Clim, 34, 8089–8103, https://doi.org/10.1175/JCLI-D-21-0059.1.
ZHANG, Q., G. WU, and Y. QIAN, 2002: The Bimodality of the 100 hPa South Asia High and its Relationship to the Climate Anomaly over East Asia in Summer. Journal of the Meteorological Society of Japan. Ser. II, 80, 733–744, https://doi.org/10.2151/jmsj.80.733.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93103-
dc.description.abstract南亞高壓 (SAH) 是亞洲夏季在上對流層最重要的反氣旋環流系統。本研究旨在分析南亞高壓的變異性及其與中緯度波動的關係。我們使用200 hPa的位勢高度 (Z200) 作為分析南亞高壓的變數,並以1979-2022在44年的氣候平均值覆蓋了 20-35°N,40-110°E 區域範圍的12520 gpm等值線作為界定南亞高壓的參考值,發現該區域內,最大Z200易出現在伊朗高原 (45-65°E) 和青藏高原 (80-100°E) 兩個地方。
透過對南亞高壓區域Z200的EOF分析,發現了其時空的變化特徵可用三個主模態描述。第一模態的空間特徵顯示出單極結構,中心位於伊朗高原的北部。第二模態的空間特徵呈現出東西方向反相位變化的二極結構,兩個變化中心分別在伊朗高原北部和青藏高原東北部。第三模態的空間特徵在東西方向呈現三極結構,反映了西風噴流中波導效性的波列特徵。上述結果顯示南亞高壓Z200的主要變化位置,是位於其北部邊界亞洲西風噴流區,並受到活躍擾動向南延伸的影響。
這些模態在時間的變異性上顯示出兩個明顯的時間尺度:準雙週 (10-20天) 和準月度 (20-40天)。南亞高壓上的準雙週變化,主要受到與嵌入在西風噴流波導中的渦旋和波列的影響,與這些擾動的向南延伸。中緯度地區擾動主要出現在60-90°E之間和 90-120°E之間兩個地方,源自50°N並向南延伸,分別影響伊朗高原北部和青藏高原東北部兩個南亞高壓的變化中心。而南亞高壓上的準月度變化,則受到上游烏拉山脈附近的阻塞高壓或低壓槽 (40-70°N, 30-60°E) 影響,這個地區同時也是歐亞大陸上阻塞高壓好發的地方。
最後,由 1989年夏季個案,證實了觀察每日高度場、風場距平等氣候變數,可清楚辨識南亞高壓的準雙週變化和西風噴流波導中的渦旋,以及60-90°E和90-120°E的中緯度擾動向南延伸的影響,顯示了解南亞高壓主模態有助於詮釋中高緯度波動和亞洲季風區天氣與氣候變化的關係。
zh_TW
dc.description.abstractThe South Asian High (SAH) is the most important upper tropospheric summer system over Asia. This study aims to analyze the variability of the SAH and its relationship with the mid-latitude waves. The SAH in this study is represented by the geopotential height at 200 hPa (Z200). Its extent is defined by the 12520-gpm contour at 200 hPa, which covers the region of (20-35°N, 40-110°E) based on the 44 years of climatological mean. Within this region, the maximum Z200 tends to occur over the Iranian Plateau (45-65°E) and the Tibetan Plateau (80-100°E).
The SAH variability is further investigated by EOF analysis of the Z200 over the SAH region. The spatial pattern of the first mode displays a monopole structure with its center to the north of the Iranian Plateau. The spatial pattern of the second mode exhibits a dipole structure in east-west direction. The dipole structure comprises the primary variation center over the northeast of the Tibetan Plateau, accompanied by a secondary variation center with a reverse sign to the north of the Iranian Plateau. The variation centers of SAH variability are all located near its northern boundary where the Asian westerly jet exists. The tripole spatial structure in east-west direction of the third mode reflects geographical enhancement of the eddies trapped within the jet stream waveguide.
The temporal variability of the leading modes shows two distinct timescales: quasi-biweekly (10-20 days) and quasi-monthly (20-40 days). The quasi-biweekly perturbations over the SAH appear as the perturbations intruding from higher latitudes to the north of the Iranian Plateau and the northeast of the Tibetan Plateau. The quasi-monthly perturbations are strongly influenced by blocking or trough patterns between 30-60°E, situated to the northwest of the Iranian Plateau. The wave train passing through the north of the SAH, characterized by several eddies trapped within the jet stream waveguide, can be observed on both the 10-20-day and the 20-40-day timescales.
Finally, the Z200 anomalies during the summer in 1989 is presented to demonstrate that the findings in this study can be useful in climate services for interpreting real-time anomalous features in Asia The examples of 1989 confirms that the variability of the SAH on the quasi-biweekly timescale is associated with eddies embedded in the jet stream waveguide, with some influenced by the southward penetration of mid-latitude waves originating from 50°N or further north in the longitude range of 60-90°E and 90-120°E.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:26:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:26:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Contents vi
Figure captions viii
1. Introduction 1
2. Data and Method 6
2.1 Data 6
2.2 Method 6
3. Basic features of the SAH 8
3.1 Climatological field of the SAH 8
3.2 Bimodal distribution of the 200hPa geopotential height daily maximum 10
4. Leading modes of the SAH 13
4.1 Spatial and temporal characteristics of the leading modes 13
4.1.1 EOF1 13
4.1.2 EOF2 14
4.1.3 EOF3 15
4.2 The 200-hPa large-scale wind and geopotential height association with the EOF1 – the decadal variability 16
4.3 The 200hPa large-scale wind and geopotential height association with the EOF2 and EOF3 – the intraseasonal variability 21
4.4 The relationship between mid-latitude waves and the SAH leading modes 23
4.5 Showcase of the SAH leading modes: the summer in 1989 26
5. Summary and Discussion 31
5.1. Summary 31
5.2. Discussion 33
References 38
Figures 42
-
dc.language.isoen-
dc.subject南亞高壓zh_TW
dc.subject亞洲夏季季風zh_TW
dc.subject準雙週振盪zh_TW
dc.subjectQuasi-biweekly oscillationsen
dc.subjectAsian summer monsoonen
dc.subjectSouth Asian Highen
dc.title用200百帕位勢高度來探討南亞高壓的變化特徵zh_TW
dc.titleCharacteristics of the South Asian High variability revealed by 200hPa geopotential heighten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee隋中興;曾開治;羅資婷zh_TW
dc.contributor.oralexamcommitteeChung-Hsiung Sui;Kai-Chih Tseng;Tzu-Ting Loen
dc.subject.keyword亞洲夏季季風,南亞高壓,準雙週振盪,zh_TW
dc.subject.keywordAsian summer monsoon,South Asian High,Quasi-biweekly oscillations,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202401227-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-28-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf6.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved