請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93068
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葛煥彰 | zh_TW |
dc.contributor.advisor | Huan-Jang Keh | en |
dc.contributor.author | 張家菻 | zh_TW |
dc.contributor.author | Chia-Lin Chang | en |
dc.date.accessioned | 2024-07-17T16:14:59Z | - |
dc.date.available | 2024-07-18 | - |
dc.date.copyright | 2024-07-17 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-12 | - |
dc.identifier.citation | 1. Stokes, G.G. bn the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Trans. Camb. Phil. Soc. 1845, 8, 287-319.
2. Stokes, G.G. bn the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 1851, 9, 8–106. 3. Masliyah, J.H.; Neale, G.; Malysa, K.; van de Ven, T.G.M. Creeping flow over a composite sphere: Solid core with porous shell. Chem. Eng. Sci. 1987, 42, 245–253. 4. Keh, H.J.; Chou, J. Creeping motion of a composite sphere in a concentric spherical cavity. Chem. Eng. Sci. 2004, 59, 407–415. 5. Anderson, J.L.; Solomentsev, Y. Hydrodynamic effects of surface layer on colloidal particles. Chem. Eng. Commun. 1996, 148–150, 291–314. 6. Wunderlich, R.W. The effects of surface structure on the electrophoretic mobilities of large particles. J. Colloid Interface Sci. 1982, 88, 385–397. 7. Napper, D.H. Polymeric Stabilization of Colloidal Dispersions; Academic Press: London, UK, 1983. 8. Neale, G.; Epstein, N.; Nader, W. Creeping flow relative to permeable spheres. Chem.Eng. Sci. 1973, 28, 1865–1874. 9. Malysa, K.; van de Ven, T.G.M. Rotational and translational motion of a sphere parallel to a wall. Int. J. Multiph. Flow 1986, 12, 459–468. 10. Liu, Q.; Prosperetti, A. Wall effects on a rotating sphere. J. Fluid Mech. 2010, 657,1–21. 11. Daddi-Moussa-Ider, A.; Lisicki, M.; Gekle, S. Slow rotation of a spherical particle inside an elastic tube. Acta Mech. 2018, 229, 149–171. 12. Romanò, F.; des Boscs, P.-E.; Kuhlmann, H.C. Forces and torques on a sphere moving near a dihedral corner in creeping flow. Eur. J. Mech. B Fluids 2020, 84, 110–121. 13. Jeffery, G.B. bn the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. 1915, 14, 327–338. 14. Keh, H.J.; Chang, J.H. Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity. Chem. Eng. Sci. 1998, 53, 2365–2377. 15. Lee, T.C.; Keh, H.J. Slow motion of a spherical particle in a spherical cavity with slip surfaces. Int. J. Eng. Sci. 2013, 69, 1–15. 16. Papavassiliou, D.; Alexander, G.P. Exact solutions for hydrodynamic interactions of two squirming spheres. J. Fluid Mech. 2017, 813, 618–646. 17. Chou, C.Y.; Keh, H.J. Slow rotation of a spherical particle in an eccentric spherical cavity with slip surfaces. Eur. J. Mech. B Fluids 2021, 86, 150–156. 18. Brenner, H.; Sonshine, R.M. Slow viscous rotation of a sphere in a circular cylinder. Quart. J. Mech. Appl. Math. 1964, 17, 55–63. 19. Greenstein, T.; Schiavina, G.L. Torque exerted on a slowly rotating eccentrically positioned sphere within an infinitely long circular cylinder. Int. J. Multiph. Flow 1975, 2, 353–355. 20. Lee, M.C.; Keh, H.J. Slow axisymmetric rotation of a sphere in a circular tube with slip surfaces. Fluid Dyn. Res. 2021, 53, 065502. 21. Dean, W.R.; b’Neill, M.E. A slow motion of viscous liquid caused by the rotation of a solid sphere. Mathematika 1963, 10, 13–24. 22. Chen, P.Y.; Keh, H.J. Slow motion of a slip spherical particle parallel to one or two plane walls. J. Chin. Inst. Chem. Eng. 2003, 34, 123–133. 23. Liao, J.C.; Keh, H.J. Slow rotation of a sphere about its diameter normal to two planes with slip surfaces. Fluid Dyn. Res. 2022, 54, 035502. 24. Srinivasacharya, D.; Krishna Prasad, M. Steady rotation of a composite sphere in a concentric spherical cavity. Acta Mech. Sin. 2012, 28, 653–658. 25. Prakash, J.; Raja Sekhar, G.P. Slow motion of a porous spherical particle with a rigid core in a spherical fluid cavity. Meccanica 2017, 52, 91–105. 26. Sherief, H.H.; Faltas, M.S.; Saad, E.I. Stokes resistance of a porous spherical particle in a spherical cavity. Acta Mech. 2016, 227, 1075–1093. 27. Chou, C.Y.; Keh, H.J. Low-Reynolds-number rotation of a soft particle inside an eccentric cavity. Eur. J. Mech. B Fluids 2022, 91, 194–201. 28. Jhuang, L.J.; Keh, H.J. Slow axisymmetric rotation of a soft sphere in a circular cylinder. Eur. J. Mech. B Fluids 2022, 95, 205–211. 29. Ganatos, P.; Weinbaum, S.; Pfeffer, R. A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries Part 2 Parallel motion. J. Fluid Mech. 1980, 99, 755–783. 30. Chang, Y.C.; Keh, H.J. Slow motion of a slip spherical particle perpendicular to two plane walls. J. Fluids Struct. 2006, 22, 647–661. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93068 | - |
dc.description.abstract | 本文探討一個軟質球形粒子於充滿不可壓縮的牛頓流體之兩平行平板間任意位置,以其垂直於平板之直徑為轉軸,所進行的穩態低雷諾數轉動。粒子外部的流體速度透過Stokes方程式在圓柱坐標系統和球坐標系統的個別通解相加獲得流速通解,而粒子多孔表面層內的流體速度則透過 Brinkman 方程式在球坐標系統下獲得流速通解。首先帶入平板的邊界條件並透過 Hankel 轉換法解析計算,接著帶入粒子表面的邊界條件,最後使用邊界取點法數值計算,獲得流體施加於粒子之力矩。吾人探討正規化力矩與各相關無因次參數(硬質核心半徑與粒子半徑之比值、粒子半徑與單板間距之比值、粒子在平板間的相對位置、粒子半徑與流體於多孔層穿透長度之比值)之關係。平板對粒子轉動之邊界效應影響相當明顯,當固定粒子直徑與平板間距之比值時,粒子位於兩平板中間的正規化力矩最小,正規化力矩會隨粒子與任一平板的相對間距減小而增加(當粒子靠近任一平板時正規化力矩上升),即使粒子碰觸平板時正規化力矩仍然是有限的。在保持其他參數不變的情況下,軟質粒子的正規化力矩小於實心粒子(或具有較小厚度或穿透長度的多孔層之軟質粒子)。 | zh_TW |
dc.description.abstract | The creeping flow of a viscous fluid around a soft colloidal sphere rotating about a diameter normal to two planar walls at an arbitrary position between them is theoretically investigated in the steady limit of small Reynolds numbers. The fluid velocity outside the particle consists of the general solutions of the Stokes equation in circular cylindrical and spherical coordinates, while the fluid velocity inside the porous surface layer of the particle is expressed by the general solution of the Brinkman equation in spherical coordinates. The boundary conditions are implemented first on the planar walls by means of the Hankel transforms and then at the particle and hard-core surfaces by a collocation technique. The torque exerted on the particle by the fluid is calculated as a function of the ratio of the core-to-particle radii, ratio of the particle radius to the flow penetration length of the porous layer, and relative particle-to-wall spacings over the entire range. The wall effect on the rotating soft particle can be significant. The hydrodynamic torque exerted on the confined soft sphere increases as the relative particle-to-wall spacings decrease and stays finite even when the soft sphere contacts the plane walls. It is smaller than the torque on a hard sphere (or soft one with a reduced thickness or penetration length of the porous layer), holding the other parameters constant. For a given relative wall-to-wall spacing, this torque is minimal when the particle is situated midway between the walls and rises as it locates closer to either wall. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:14:59Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-17T16:14:59Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
謝辭 ii 摘要 iii Abstract iv Table of Contents vi List of Figures viii List of Tables xi Chapter 1 Introduction 1 Chapter 2 Analysis 4 2.1. Governing equation and boundary conditions 6 2.2. Solution for the fluid velocity 7 2.3. Hydrodynamic torque on the soft particle 11 Chapter 3 Results and discussion 12 3.1. Torque on a porous particle 13 3.2 Torque on a soft particle 21 Chapter 4 Conclusions 29 List of symbols 32 References 34 Appendix A 38 | - |
dc.language.iso | en | - |
dc.title | 球形軟質粒子垂直兩平板之緩慢轉動 | zh_TW |
dc.title | Slow rotation of a soft spherical particle normal to two plane walls | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 詹正雄;謝子賢 | zh_TW |
dc.contributor.oralexamcommittee | Jeng-Shiung Jan;Tzu-Hsien Hsieh | en |
dc.subject.keyword | 粒子旋轉,軟質粒子,平板間之邊界效應,蠕動流,力矩, | zh_TW |
dc.subject.keyword | particle rotation,soft particle,boundary effect in slit,creeping flow,hydrodynamic torque, | en |
dc.relation.page | 42 | - |
dc.identifier.doi | 10.6342/NTU202401699 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-07-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 2.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。