Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93065
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟zh_TW
dc.contributor.advisorJaw-Lin Wangen
dc.contributor.author卓躍zh_TW
dc.contributor.authorYue Chuoen
dc.date.accessioned2024-07-17T16:14:05Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-07-12-
dc.identifier.citationWilliam O'Brien, Floyd Dunn, History of high intensity focused ultrasound, Bill and Frank Fry and the Bioacoustics Research Laboratory. J. Acoust. Soc. Am., 2014. 136.
Ya-Cherng Chu, Jormay Lim, Andy Chien, Chih-Cheng Chen, and Jaw-Lin Wang, Activation of Mechanosensitive Ion Channels by Ultrasound. Ultrasound in medicine and biology, 2022. 48(10).
Jiejun Zhu, Quanxiang Xian, Xuandi Hou, Kin Fung Wong, Tingting Zhu, Zihao Chen, Dongming He, Shashwati Kala, Suresh Murugappan, Jianing Jing, Yong Wu, Xinyi Zhao, Danni Li, Jinghui Guo, Zhihai Qiu, Lei Sun, The mechanosensitive ion channel Piezo1 contributes to ultrasound neuromodulation. Proc Natl Acad Sci USA, 2023. 120(18).
Paul Stauffer, Margarethus M Paulides, Hyperthermia Therapy for Cancer, in Comprehensive Biomedical Physics. 2014.
Thomas R. Nelson, J Brian Fowlkes, Jacques S. Abramowicz, Charles C. Church, Ultrasound Biosafety Considerations for the Practicing Sonographer and Sonologist, J Ultrasound Med. 2009.
Reflection and Transmission of Plane Waves. Available from: http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/refltrans.html.
Refraction of Sound Waves. Available from: https://www.acs.psu.edu/drussell/Demos/refract/refract.html.
M.S. Harb, F.G. Yuan., A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves. Ultrasonics, 2015. 61: p. 62-70.
Ya-Cherng Chu, Jormay Lim, Chien-Hsi Lai, Mu-Cyun Tseng, Yeh-Shiu Chu, Jaw-Lin Wang, Elevation of Intra-Cellular Calcium in Nucleus Pulposus Cells with Micro-Pipette-Guided Ultrasound. Ultrasound in Medicine & Biology, 2021. 47(7): p. 1775-1784.
Jormay Lim, Ya-Cherng Chu, Hsiao-Hsin Tai , Andy Chien, Shao-Shiang Huang,Chih-Cheng Chen, Jaw-Lin Wang, Auditory independent low-intensity ultrasound stimulation of mouse brain is associated with neuronal ERK phosphorylation and an increase of Tbr2 marked neuroprogenitors. Biochemical and Biophysical Research Communications, 2022. 613: p. 113-119.
M W Nishani Dayaratne, Srdjan M Vlajkovic, Janusz Lipski, Peter R Thorne, Kölliker's organ and the development of spontaneous activity in the auditory system: implications for hearing dysfunction. Biomed Res Int, 2014.
Iñaki Cercadillo-Ibarguren, Antonio España-Tost, Josep Arnabat-Domínguez, Eduard Valmaseda-Castellón, Leonardo Berini-Aytés, Cosme Gay-Escoda, Histologic evaluation of thermal damage produced on soft tissues by CO2, Er,Cr:YSGG and diode lasers. Med Oral Patol Oral Cir Bucal, 2010. 15(6).
Charles A. Linke, Edwin L. Carstensen, Leon A. Frizzell, Ahmad Elbadawi, Charlotte W. Fridd, Localized Tissue Destruction by High-Intensity Focused Ultrasound. Archives of Surgery, 1973. 107(6).
Ping Wang, Albert Wingnang Leung, and Chuanshan Xu, Low-intensity ultrasound-induced cellular destruction and autophagy of nasopharyngeal carcinoma cells. Exp Ther Med., 2011. 2(5).
Steven D McCarus, Laura K S Parnell, The Origin and Evolution of the HARMONIC® Scalpel. Surg Technol Int, 2019. 35.
Claudio Peixoto Crispi, Claudio Peixoto Crispi, Jr, Paulo Sergio da Silva Reis, Jr, Fernando Luis Fernandes Mendes, Marina Mattos Filgueiras, and Marlon de Freitas Fonseca, Hemostasis with the Ultrasonic Scalpel. JSLS, 2018. 22(4).
吳觀宇, 探究不同力學模組的超音波刺激對機械力敏感通道所引發的鈣離子反應之影響. 2023, 國立台灣大學碩士論文.
T Kikuchi, R S Kimura, D L Paul, T Takasaka, J C Adams, Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev, 2000. 32(1).
William E. Brownell, Outer hair cell electromotility and otoacoustic emissions. Ear Hear, 1990. 11(2).
賴建熹, 超音波微管在細胞上的應用. 2020, 國立台灣大學碩士論文.
Wen-Yi Tseng, Martin Stacey, Hsi-Hsien Lin, Role of Adhesion G Protein-Coupled Receptors in Immune Dysfunction and Disorder. Int J Mol Sci, 2023. 24(6).
Mark E Schafer, Norman M. Spivak, Alexander S Korb, Alexander Bystritsky, Design, Development, and Operation of a Low-Intensity Focused Ultrasound Pulsation (LIFUP) System for Clinical Use. IEEE Trans Ultrason. Ferroelectr. Freq. Control, 2021. 68: p. 54-64.
Mehmet S. Ozdas, Aagam S. Shah, Paul M. Johnson, Nisheet Patel, Markus Marks, Tansel Baran Yasar, Urs Stalder, Laurent Bigler, Wolfger von der Behrens, Shashank R. Sirsi & Mehmet Fatih Yanik, Non-invasive molecularly-specific millimeter-resolution manipulation of brain circuits by ultrasound-mediated aggregation and uncaging of drug carriers. Nature Communications, 2020. 11.
Chenchen Zhou, Qingdong Wang, Shifu Pu, Yuzhi Li, Gepu Guo, Hongyan Chu, Qingyu Ma, Juan Tu, Dong Zhang, Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation. Journal of Applied Physics, 2020. 128.
Wei-Chen Lo, Ching-Hsiang Fan, Yi-Ju Ho, and Chih-Kuang Yeh, Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proc Natl Acad Sci USA, 2020. 118(4).
H. T. O'Neil, Theory of Focusing Radiators. J. Acoust. Soc. Am., 1949. 21(5).
何建穎,適用於動物及細胞實驗之超音波探頭設計.2022,國立台灣大學碩士論文.
Nir Lipsman, Ying Meng, Allison J Bethune, Yuexi Huang , Benjamin Lam, Mario Masellis, Nathan Herrmann, Chinthaka Heyn, Isabelle Aubert, Alexandre Boutet, Gwenn S Smith, Kullervo Hynynen, Sandra E Black, Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound. Nature Communications, 2018. 9(1).
Yao-Sheng Tung, Fotios Vlachos, Jameel A. Feshitan, and Mark A. Borden, The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. J Acoust Soc Am., 2011. 130(5).
Norman R Saunders, Katarzyna M Dziegielewska, Kjeld Møllgård, Mark D Habgood, Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Frontiers in Neuroscience, 2015.
Hongsun Guo, Mark Hamilton 2nd, Sarah J Offutt, Cory D Gloeckner, Tianqi Li , Yohan Kim, Wynn Legon, Jamu K Alford, Hubert H Lim, Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway. Neuron, 2018. 98(5).
Tomokazu Sato, Mikhail G Shapiro, Doris Y Tsao, Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism. Neuron, 2018. 98(5).
Jianguo Cui, Bicheng Zhu, Guangzhan Fang, Ed Smith, Steven E Brauth, Yezhong Tang, Effect of the Level of Anesthesia on the Auditory Brainstem Response in the Emei Music Frog (Babina daunchina). PLOS ONE, 2017. 12(1).
林宇宣, 超音波刺激裝置設計與模擬. 2021, 國立台灣大學碩士論文.
Zhihai Qiu, S.K., Jinghui Guo, Quanxiang Xian, Jiejun Zhu, Ting Zhu, Xuandi Hou, Kin Fung Wong, Minyi Yang, Haoru Wang, Lei Sun, Targeted Neurostimulation in Mouse Brains with Non-invasive Ultrasound. Cells Reports, 2020. 32(7).
Ying Meng, Christopher B Pople., Harriet Lea-Banks, Kullervo Hynynen, Nir Lipsman, Clement Hamani, Focused ultrasound neuromodulation. Int Rev Neurobiol., 2021.
G. Darmani , T O Bergmann, K. Butts Pauly , C.F. Caskey, L. de Lecea , A. Fomenko , E. Fouragnan, W. Legon, K.R. Murphy, T. Nandi, M.A. Phipps, G. Pinton, H. Ramezanpour, J. Sallet, S.N. Yaakub, S.S. Yoo, R. Chen, Non-invasive transcranial ultrasound stimulation for neuromodulation. Clinical Neurophysiology, 2022. 135: p. 51-73.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93065-
dc.description.abstract近年興起低強度超音波治療研究之風潮,不像傳統的熱治療(高強度)超音波以破壞病灶為手段,低強度超音波主要以機械力刺激細胞的機械敏感通道,影響離子之進出,進一步影響生物訊號之傳遞,此應用可能包含神經調節、藥物傳遞、基因治療、組織發育等。
為探索低強度超音波治療於不同領域應用之可行性,建立一套穩定的生物實驗系統是必要的。本實驗室已在相關領域深耕多年,開發出多種適用於不同情境之超音波刺激裝置,並投入生物實驗探討超音波刺激之生物機制。本研究將針對其中三種常用的裝置:超音波即時影像載台、超音波玻璃微管以及聚焦超音波,進一步發展與改良他們的設計,並開發新的生物實驗應用以探索其實用性。
本研究設計出適用於刺激培養皿內細胞與組織的超音波即時影像載台Dish-LIC,並利用其觀察超音波刺激對細胞或組織鈣離子反應之影響,也可用於刺激組織影響其ERK磷酸化反應。將原本用於刺激細胞引起鈣離子反應之超音波玻璃微管,利用其聲流對細胞或組織產生剪應力的特性,應用於特定組織剝離與細胞的adhesion GPCR分離。另外根據聚焦曲面的數學模型,發現了聚焦探頭存在極限聚焦深度的性質,並利用此性質開發出了迷你聚焦探頭;本研究將聚焦超音波應用於開啟小鼠血腦屏障、刺激組織影響其ERK磷酸化反應以及刺激小鼠腦部影響其聽力反應。
zh_TW
dc.description.abstractIn recent years, there has been a wave of research on low-intensity ultrasound therapy. Unlike the traditional thermotherapy (high-intensity) ultrasound that destroys the lesion, low-intensity ultrasound mainly stimulates the mechanosensitive channels of the cells with mechanical stimulation, which affects the ionic influx and efflux, and then further affects the transmission of biological signals. The applications may include neuromodulation, drug delivery, gene therapy, and tissue development.
To explore the feasibility of low-intensity ultrasound therapy in different fields, it is necessary to establish a stable biological experimental system. Our laboratory has been working in this field for years, and has developed various ultrasonic stimulation devices and conducted experiments to investigate the biological mechanism of ultrasonic stimulation. In this study, we further developed and improved the design of three commonly used devices, namely, ultrasound live image chamber, ultrasound micropipette, and focused ultrasound, and developed new biological applications to explore their utilities.
In this study, we designed the Dish-LIC, an ultrasound live image chamber for stimulating cells and tissues in culture dishes, to observe the effects of ultrasonic stimulation on the calcium ion response of cells and tissues, as well as to stimulate tissues to affect their ERK phosphorylation response. The ultrasound micropipette, originally used to stimulate cells to induce calcium ion response, applied to tissue separation and cellular adhesion GPCR separation by utilizing its acoustic flow to generate shear stress on cells or tissues. In addition, based on the mathematical model of the focusing surface, we discovered the minimal focal distance of a focused ultrasound probe, and developed a mini focusing probe accordingly. In this study, focused ultrasound was applied to open the blood-brain barrier, stimulate tissues to affect ERK phosphorylation, and stimulate the brain to affect the auditory response in mice.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:14:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:14:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 IV
Abstract V
發表著作 VI
目 次 VII
圖 次 XI
表 次 XV
第一章 緒論 1
1.1 研究背景 1
1.2 實驗室超音波裝置 2
1.2.1 超音波即時影像載台 2
1.2.2 超音波玻璃微管 2
1.2.3 聚焦超音波 3
1.3 機械力生物機制 3
1.4研究目的 4
第二章 材料與方法 5
2.1 力學波 5
2.1.1 聲波 5
2.1.2 聲輻射(acoustic radiation) 5
2.1.3 脈衝重複頻率(pulse repetition frequency)與佔空比(duty factor) 6
2.1.4 聲強度(acoustic intensity) 6
2.1.5 聲阻抗(acoustic impedance) 8
2.1.6 聲波的透射(transmission)、折射(refraction)與反射(reflection) 8
2.1.7 聲波傳遞模式 10
2.2 設備原理介紹 11
2.2.1 壓電陶瓷 11
2.2.2 波形產生器(function generator) 11
2.2.3 功率放大器(power amplifier) 12
2.2.4 水聽器(hydrophone) 12
2.2.5 脈衝產生與接收器(pulser & receiver ) 14
2.2.6 示波器(oscilloscope) 14
2.2.7 CelleX波形產生器 15
2.2.8 熱電偶 15
2.2.9 不同介質波速量測 16
2.2.10 超音波穿顱衰減量測 17
第三章 超音波即時影像載台 18
3.1 設計目的 18
3.2 Dish-LIC設計 18
3.3 量測驗證 19
3.3.1 聲強量測 19
3.3.2 升溫量測 20
3.4 生物實驗應用 21
3.4.1 超音波刺激髓核細胞引起calcium influx實驗 21
3.4.2 耳蝸組織鈣離子反應受超音波刺激之變化 23
3.4.3 超音波強度與耳蝸ERK磷酸化之關係 26
第四章 超音波玻璃微管 29
4.1設計目的 29
4.2 設計原理 29
4.3 量測驗證(由臺大醫工所吳觀宇學長提供) 30
4.3.1 聲壓量測 30
4.3.2 聲流量測 31
4.4 生物實驗應用 33
4.4.1 micro-pipette應用於細胞adhesion GPCR分離 33
4.4.2 micro-pipette用於耳蝸組織剝離 36
第五章 聚焦超音波 38
5.1 設計目的 38
5.2 設計原理 38
5.2.1 球面半徑公式法 38
5.2.2 數值逼近法 39
5.2.3 聚焦深度極限 41
5.3 模擬驗證 41
5.3.1 模擬驗證方法 41
5.3.2 聚焦深度對聚焦效果之影響 42
5.3.3 數值逼近法步階對聚焦效果之影響 42
5.3.4 不同計算方法之聚焦曲面幾何差異 43
5.4 聚焦探頭設計 44
5.5 量測驗證 45
5.5.1 聲強量測 45
5.5.2 升溫量測 47
5.6 生物實驗應用 47
5.6.1 聚焦超音波用於暫時開啟血腦屏障(blood–brain barrier, BBB) 47
5.6.2 超音波強度與耳蝸ERK磷酸化之關係 49
5.6.3 超音波對聽覺反應之影響 50
第六章 結論與未來展望 53
6.1 結論 53
6.1.1 超音波即時影像載台 53
6.1.2超音波玻璃微管 53
6.1.3 聚焦超音波 53
6.2 未來展望 54
6.2.1 超音波即時影像載台 54
6.2.2 超音波玻璃微管 54
6.2.3 聚焦超音波 54
參考文獻 55
Acknoledgement 59
-
dc.language.isozh_TW-
dc.subject低強度超音波zh_TW
dc.subject機械力刺激生物機制zh_TW
dc.subject鈣離子反應zh_TW
dc.subject超音波刀zh_TW
dc.subject聚焦超音波zh_TW
dc.subjectcalcium ion responseen
dc.subjectlow intensity ultrasounden
dc.subjectfocused ultrasounden
dc.subjectultrasonic knifeen
dc.subjectbiological mechanisms of mechanical stimulationen
dc.title適用於生物實驗之超音波刺激裝置設計與應用zh_TW
dc.titleDesign and application of ultrasonic stimulation devices for biological experimentsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳振吉;李百祺zh_TW
dc.contributor.oralexamcommitteeChen-Chi Wu;Pai-Chi Lien
dc.subject.keyword低強度超音波,機械力刺激生物機制,鈣離子反應,超音波刀,聚焦超音波,zh_TW
dc.subject.keywordlow intensity ultrasound,biological mechanisms of mechanical stimulation,calcium ion response,ultrasonic knife,focused ultrasound,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202401494-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved