Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93045
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然zh_TW
dc.contributor.advisorChing-Jan Chenen
dc.contributor.author林孝澤zh_TW
dc.contributor.authorXiao-Ze Linen
dc.date.accessioned2024-07-17T16:07:50Z-
dc.date.available2024-07-18-
dc.date.copyright2024-07-17-
dc.date.issued2024-
dc.date.submitted2024-07-10-
dc.identifier.citationFSP group, “How to Choose an AI Server Power Supply Unit (PSU),” Oct. 2023 [online]: https://www.fsp-group.com/tw/knowledge-prd-66.html
F. Yu, F. C. Lee, and P. Mattavelli, "A small signal model for average current mode control based on describing function approach," in Proc. IEEE Energy Convers. Congr. Expo., 2011, pp. 405-412.
J. Jang, M. Joung, B. Choi and H. Kim, "Dynamic analysis and control design of optocoupler-isolated LLC series resonant converters with wide input and load variations," in Proc. IEEE Energy Convers. Congr. Expo., 2009, pp. 758- 765.
J. Jang, M. Joung, S. Choi, Y. Choi, and B. Choi, “Current mode control for LLC series resonant dc-to-dc converters,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), 2011, pp. 21–27.
Z. Hu, L. Wang, Y. -F. Liu and P. C. Sen, "Bang-Bang charge control for LLC resonant converters," in Proc. IEEE Energy Convers. Congr. Expo., 2013, pp. 140-146.
R. Redl and N. O. Sokal, ‘‘Near-optimum dynamic regulation of DC–DC converters using feed-forward of output current and input voltage with current-mode control,’’ IEEE Trans. Power Electron., vol. PE-1, no. 3, pp. 181–192, Jul. 1986.
R. Oruganti, J. J. Yang, and F. C. Lee, “Implementation of optimal trajectory control of series resonant converter,” IEEE Trans. Power Electron., vol. 3, no. 3, pp. 318–327, Jul. 1988.
W. Feng, F. C. Lee, and P. Mattavelli, “Simplified optimal trajectory control (SOTC) for LLC resonant converters,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2415–2426, May 2013.
J. Chen, L. F. Jiang, L. X. Gong, J. H. Li, Y. F. Peng, and Y. Wang, “State Plane Feedforward Control for LLC Converter With Geometric Simplification,” IEEE Trans. Power Electron., vol. 38, no. 10, pp. 12469–12481, Oct. 2023.
Q. Xu, R. Y. Zou, T. T. Wen, S. X. Du, X. Li, D. R. Lu, and H. B. Hu, "A Nonlinear Load Current Feedforward Strategy For The Charge-Controlled LLC Converter and Its Digital Implementation to Improve The Dynamic Response," IEEE Trans. Ind. Electron., vol. 70, no. 10, pp. 10195–10203, Oct. 2023.
E. X. Yang, F. C. Lee, and M. M. Jovanovic, “Small-signal modeling of power electronic circuits by extended describing function concept,” in Proc. Virginia Power Electron. Center (VPEC) Annual Seminar, 1991, pp. 167–178.
S. Tian, F. C. Lee, and Q. Li, “A simplified equivalent circuit model of series resonant converter,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3922–3931, May 2016.
S. Tian, F. C. Lee, and Q. Li, “Equivalent circuit modeling of LLC resonant converter,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2016, pp. 1608–1615.
R. Yang, B. A. McDonald, and Y. Li, “Investigation on the small signal characteristic based on the LLC hybrid hysteretic charge control,” CPSS Trans. Power Electron. Appl., vol. 4, no. 2, pp. 128–142, Jun. 2019.
T.W. Martin, S.S. Ang, “Digital Control for Switching Converters”, in Proc. IEEE Int. Symp. Ind. Electron., 1995, pp. 480-484.
H. Al-Atrash, I. Batarseh, “Digital Control Design for a Practical Power Electronics Engineer”, in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), 2007, pp. 34-41
C. Buccella, C. Cecati and H. Latafat, "Digital Control of Power Converters—A Survey," IEEE Trans. Ind. Inform., vol. 8, no. 3, pp. 437-447, Aug. 2012.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93045-
dc.description.abstractLLC雙迴路控制相較於傳統單迴路控制,在添加內迴路控制下可將系統轉移函數簡化為一階,除了可降低控制器設計複雜度外,電路頻寬亦可提高以改善動態響應。本文推得更為精準之雙迴路控制轉移函數,既保留了利用能量守恆方法求得轉移函數之低、中頻準確度,也保留了擴展描述函數由開關頻率及其諧波等造成之高頻極、零點資訊,使模型不論是在低、中與高頻,皆與模擬相差無幾。然而,隨著越趨嚴格的設計規格,雙迴路控制動態響應越趨不足。為了改善這個問題,可加入輸出電流前饋機制。當負載改變時,直接透過前饋路徑調整電壓命令至穩態,以大幅改善動態響應。然而,對於LLC轉換器,負載和電壓命令之關係未知。本文首先利用狀態軌跡分析當電路操作於低於、等於或高於諧振頻率之電壓命令與負載之關係。接著由此延伸,求出負載改變之電壓命令改變量,其係數即為輸出電流前饋增益。最後分析共同性,得出輸出電流前饋增益通解,使電路具適應性。另外,推導了精準輸出阻抗關係式。從輸出阻抗可以得知,加上輸出電流前饋控制可使輸出阻抗大幅降低,證實其動態響應改善。最後分析了數位延時造成之最大輸出電壓下降量,確保最糟糕情況仍滿足制定規格。
本文設計並聯相加形式之電壓迴路控制器,充分利用數位模組化益處。接著,將電壓迴路控制器與輸出電流前饋控制演算法數位(離散)化。最後架構實現並設計圖形使用者介面(graphical user interface, GUI),除了可以靈活調整數位控制器變數以滿足各個LLC設計規格外,也可將變數傳回GUI中檢查,方便尋找電路問題處。為了驗證所提演算法與架構,進行模擬與實驗驗證。除了電路模擬與實驗數值相符外,從動態響應可以看出,不論操作條件(頻率)為何,動態響應可以在不失效率下改善動態響應約90%,大幅改善動態響應。
zh_TW
dc.description.abstractCompared to traditional single-loop control, LLC dual-loop control simplifies the system transfer function to the first-order model by incorporating inner-loop control. This approach not only reduces the complexity of controller design but also increases the circuit bandwidth, thereby enhancing dynamic response. This thesis derives a more accurate dual-loop control transfer function, which retains the low and mid-frequency accuracy derived through energy conservation methods and preserves high-frequency pole-zero information caused by switching frequency and its harmonics through extended description functions. However, as design specifications become more stringent, the dynamic response of dual-loop control becomes inadequate. To improve this, an output current feedforward mechanism can be introduced. When the load changes, the feedforward path directly adjusts the voltage command to steady-state, significantly enhancing dynamic response. However, the relationship between load and voltage command in LLC converters is not well understood. This thesis uses state trajectory analysis to determine the relationship between voltage command and load when the circuit operates below, at, or above the resonant frequency. From this analysis, the change in voltage command due to load variation is derived, with the coefficient representing the output current feedforward gain. Furthermore, the analysis provides a general solution for output current feedforward gain across different operating frequencies, enhancing circuit adaptability. Additionally, a precise output impedance relationship is derived, demonstrating that output current feedforward control significantly reduces output impedance, thus improving dynamic response. The thesis also analyzes the maximum output voltage drop caused by digital delay to ensure compliance with the established specifications under worst-case conditions.
The thesis designs the parallel summation form voltage loop controller, having the benefits of digital modularization. The voltage loop controller and output current feedforward control algorithm are then discretized. Finally, the framework is implemented with a graphical user interface (GUI), enabling flexible adjustment of digital controller variables to meet various LLC design specifications, and allowing variables to be returned to the GUI for inspection, facilitating circuit issue identification. To validate the proposed algorithm and framework, simulations and experimental verifications were conducted. In addition to the consistency between circuit simulations and experimental results, the dynamic response shows 90% significant improvement without compromising efficiency, regardless of the operating conditions (frequency).
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-17T16:07:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-17T16:07:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目次 v
圖次 viii
表次 xvii
Chapter 1. Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Review of Topology and Control Method 6
1.2.1 Single Loop Control & Dual Loop Control 7
1.2.2 Output Current Feedforward Control 17
1.3 Research Objective 28
1.4 Thesis Organization 29
Chapter 2. Analysis of LLC Steady-state and Small Signal Model 32
2.1 Analysis of LLC Steady-state Model 32
2.1.1 Time-Domain Analysis 32
2.1.2 Steady-state Trajectory Analysis 47
2.1.3 Initial Value Analysis 59
2.1.4 Dual Loop Control Voltage Command Analysis 75
2.2 Analysis of LLC Small Signal Model 80
2.2.1 Single Loop Control 80
2.2.2 Dual Loop Control 92
2.2.3 More Accurate Dual Loop Control Model 104
Chapter 3. Analysis of Adaptive Output Current Feedforward Control 114
3.1 Output Current Feedforward Control Description 114
3.2 Output Current Feedforward Gain Derivation 116
3.3 Adaptive Output Current Feedforward Gain Derivation 118
3.4 Output Impedance Analysis 120
Chapter 4. Analysis of Digital Implementation Issues 134
4.1 Controller Digital Implementation 135
4.2 Controller Architecture 141
4.3 Delay Consideration 144
4.3.1 At the resonant frequency 144
4.3.2 Above the resonant frequency 147
4.3.3 Below the resonant frequency 147
Chapter 5. Digital Implementation based on FPGA 150
5.1 Programmable Logic and Data Conversion Devices 152
5.2 Detailed Description of Functional Blocks 156
5.2.1 ADC Interface 156
5.2.2 DAC Interface 159
5.2.3 Digital Controller、AIOFF and Soft Start 160
5.2.4 DPWM and Dead Time 167
5.3 GUI and Communication Interface 172
Chapter 6. Simulation and Experimental Results Verification 178
6.1 Simulation and Experimental Platform Setup 179
6.1.1 PSIM Platform 179
6.1.2 Co-simulation Platform 180
6.1.3 Experimental Platform 183
6.2 Steady-State Response 185
6.3 Transient Response 194
6.4 Efficiency Measurement 204
Chapter 7. Conclusions and Future Works 205
7.1 Conclusions 205
7.2 Future Works 207
References 208
-
dc.language.isoen-
dc.subjectLLC諧振轉換器zh_TW
dc.subject寬輸入範圍zh_TW
dc.subject數位適應性輸出電流前饋控制zh_TW
dc.subject雙迴路控制zh_TW
dc.subjectdual loop controlen
dc.subjectLLC resonant converteren
dc.subjectdigital adaptive output current feedforward controlen
dc.subjectwide input rangeen
dc.title數位式適應性輸出電流前饋機制之LLC諧振轉換器zh_TW
dc.titleDigital Adaptive Output Current Feedforward Control for LLC Resonant Convertersen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳耀銘;陳偉倫zh_TW
dc.contributor.oralexamcommitteeYaow-Ming Chen;Woei-Luen Chenen
dc.subject.keywordLLC諧振轉換器,寬輸入範圍,雙迴路控制,數位適應性輸出電流前饋控制,zh_TW
dc.subject.keywordLLC resonant converter,wide input range,dual loop control,digital adaptive output current feedforward control,en
dc.relation.page209-
dc.identifier.doi10.6342/NTU202401612-
dc.rights.note未授權-
dc.date.accepted2024-07-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
14.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved