請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93038完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘明楷 | zh_TW |
| dc.contributor.advisor | Ming-Kai Pan | en |
| dc.contributor.author | 盧亮听 | zh_TW |
| dc.contributor.author | Liang-Yin Lu | en |
| dc.date.accessioned | 2024-07-15T16:06:47Z | - |
| dc.date.available | 2024-07-16 | - |
| dc.date.copyright | 2024-07-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-22 | - |
| dc.identifier.citation | Aizenman, C. D., & Linden, D. J. (1999). Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. Journal of Neurophysiology, 82(4), 1697–1709.
Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10(1), 25–61. doi:10.1016/0025-5564(71)90051-4 Alviña, K., Ellis-Davies, G., & Khodakhah, K. (2009). T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. Neuroscience, 158(2), 635–641. doi:10.1016/j.neuroscience.2008.09.052 Anikeeva, P., Andalman, A. S., Witten, I., Warden, M., Goshen, I., Grosenick, L., Gunaydin, L. A., Frank, L. M., & Deisseroth, K. (2012). Optetrode: A multichannel readout for optogenetic control in freely moving mice. Nature Neuroscience, 15(1), 163–170. doi:10.1038/nn.2992 Baek, S. J., Park, J. S., Kim, J., Yamamoto, Y., & Tanaka-Yamamoto, K. (2022a). VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors. Elife, 11, e72981. Baek, S. J., Park, J. S., Kim, J., Yamamoto, Y., & Tanaka-Yamamoto, K. (2022b). VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors. ELife, 11. doi:10.7554/ELIFE.72981 Ball, G. G., Micco, D. J., & Berntson, G. G. (1974). Cerebellar stimulation in the rat: Complex stimulation-bound oral behaviors and self-stimulation. Physiology & Behavior, 13(1), 123–127. doi:10.1016/0031-9384(74)90313-8 Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage, 76, 412–427. Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47(1), 129–141. Beier, K. T., Steinberg, E. E., Deloach, K. E., Kremer, E. J., Malenka, R. C., Luo, L., Beier, K. T., Steinberg, E. E., Deloach, K. E., Xie, S., Miyamichi, K., Schwarz, L., Gao, X. J., Kremer, E. J., Malenka, R. C., & Luo, L. (2015). Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping Article Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell, 162(3), 622–634. doi:10.1016/j.cell.2015.07.015 Blenkinsop, T. A., & Lang, E. J. (2006). Block of Inferior Olive Gap Junctional Coupling Decreases Purkinje CellComplex Spike Synchrony and Rhythmicity. The Journal of Neuroscience, 26(6), 1739. doi:10.1523/JNEUROSCI.3677-05.2006 Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17(5), 241–254. doi:10.1016/j.tics.2013.03.003 Buckner, R. L. (2013). The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging. Neuron, 80(3), 807–815. doi:10.1016/j.neuron.2013.10.044 Cai, X., Kim, S., & Lee, D. (2011). Heterogeneous coding of temporally discounted values in the dorsal and ventral striatum during intertemporal choice. Neuron, 69(1), 170–182. Caligiore, D., Arbib, M. A., Miall, R. C., & Baldassarre, G. (2019). The super-learning hypothesis: Integrating learning processes across cortex, cerebellum and basal ganglia. Neuroscience & Biobehavioral Reviews, 100, 19–34. doi:10.1016/J.NEUBIOREV.2019.02.008 Carta, I., Chen, C. H., Schott, A. L., Dorizan, S., & Khodakhah, K. (2019). Cerebellar modulation of the reward circuitry and social behavior. Science, 363(6424). doi:10.1126/science.aav0581 Chabrol, F. P., Blot, A., & Mrsic-Flogel, T. D. (2019a). Cerebellar Contribution to Preparatory Activity in Motor Neocortex. Neuron, 103(3), 506-519.e4. doi:10.1016/j.neuron.2019.05.022 Chabrol, F. P., Blot, A., & Mrsic-Flogel, T. D. (2019b). Cerebellar Contribution to Preparatory Activity in Motor Neocortex. Neuron, 103(3), 506-519.e4. doi:10.1016/j.neuron.2019.05.022 Chan-Palay, V. (1977). The cerebellar dentate nucleus. In Cerebellar Dentate Nucleus (pp. 1–24). Springer. Chang, C. Y., Esber, G. R., Marrero-Garcia, Y., Yau, H.-J., Bonci, A., & Schoenbaum, G. (2016). Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. Nature Neuroscience, 19(1), 111. Chen, S., &Hillman, D. E. (1993). Colocalization of neurotransmitters in the deep cerebellar nuclei. Journal of Neurocytology, 22(2), 81–91. Chen, Y., Chen, Y., Hsu, Y., Chang, W., Hsiao, C. K., Min, M., & Lai, W. (2012). Akt1 deficiency modulates reward learning and reward prediction error in mice. Genes, Brain and Behavior, 11(2), 157–169. Chung, H. J., Steinberg, J. P., Huganir, R. L., & Linden, D. J. (2003). Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science, 300(5626), 1751–1755. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & Uchida, N. (2012). Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 482(7383), 85–88. doi:10.1038/nature10754 Czubayko, U., Sultan, F., Thier, P., & Schwarz, C. (2001). Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. Journal of Neurophysiology, 85(5), 2017–2029. Deverett, B., Koay, S. A., Oostland, M., & Wang, S. S. H. (2018). Cerebellar involvement in an evidence-accumulation decision-making task. ELife, 7. doi:10.7554/eLife.36781 Dobi, A., Margolis, E. B., Wang, H.-L., Harvey, B. K., & Morales, M. (2010). Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. Journal of Neuroscience, 30(1), 218–229. Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7), 961–974. doi:10.1016/S0893-6080(99)00046-5 Galliano, E., Gao, Z., Schonewille, M., Todorov, B., Simons, E., Pop, A. S., D’Angelo, E., Van Den Maagdenberg, A. M. J. M., Hoebeek, F. E., & DeZeeuw, C. I. (2013). Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Cell Reports, 3(4), 1239–1251. Gao, Z., Davis, C., Thomas, A. M., Economo, M. N., Abrego, A. M., Svoboda, K., DeZeeuw, C. I., & Li, N. (2018). A cortico-cerebellar loop for motor planning. Nature, 563(7729), 113–116. Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C., & Luo, L. (2013). Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron, 78(5), 773–784. Han, K. S., Guo, C., Chen, C. H., Witter, L., Osorno, T., & Regehr, W. G. (2018). Ephaptic Coupling Promotes Synchronous Firing of Cerebellar Purkinje Cells. Neuron, 100(3), 564-578.e3. doi:10.1016/J.NEURON.2018.09.018 Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646–648. Heffley, W., & Hull, C. (2019). Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. ELife, 8, e46764. doi:10.7554/eLife.46764 Heffley, W., Song, E. Y., Xu, Z., Taylor, B. N., Hughes, M. A., McKinney, A., Joshua, M., & Hull, C. (2018). Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nature Neuroscience, 21(10), 1431–1441. doi:10.1038/s41593-018-0228-8 Heil, P., & Peterson, A. J. (2015). Basic response properties of auditory nerve fibers: a review. Cell and Tissue Research, 361, 129–158. Hoche, F., Guell, X., Sherman, J. C., Vangel, M. G., & Schmahmann, J. D. (2016). Cerebellar contribution to social cognition. The Cerebellum, 15(6), 732–743. Hoshi, E., Tremblay, L., Féger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493. doi:10.1038/nn1544 Ikai, Y., Takada, M., Shinonaga, Y., & Mizuno, N. (1992). Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience, 51(3), 719–728. Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Progress in Neurobiology, 78(3), 272–303. doi:10.1016/j.pneurobio.2006.02.006 Ito, M., Sakurai, M., & Tongroach, P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. The Journal of Physiology, 324(1), 113–134. Jahnsen, H. (1986). Electrophysiological characteristics of neurones in the guinea‐pig deep cerebellar nuclei in vitro. The Journal of Physiology, 372(1), 129–147. Jenison, R. L., Rangel, A., Oya, H., Kawasaki, H., & Howard, M. A. (2011). Value Encoding in Single Neurons in the Human Amygdala during Decision Making. The Journal of Neuroscience, 31(1), 331 LP – 338. doi:10.1523/JNEUROSCI.4461-10.2011 Jörntell, H., & Hansel, C. (2006). Synaptic Memories Upside Down: Bidirectional Plasticity at Cerebellar Parallel Fiber-Purkinje Cell Synapses. Neuron, 52(2), 227–238. doi:10.1016/j.neuron.2006.09.032 Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10(12), 1625–1633. Kawato, M., & Gomi, H. (1992). A computational model of four regions of the cerebellum based on feedback-error learning. Biological Cybernetics, 68(2), 95–103. doi:10.1007/BF00201431 Kessler, D., Carr, C. E., Kretzberg, J., & Ashida, G. (2021). Theoretical Relationship Between Two Measures of Spike Synchrony: Correlation Index and Vector Strength. Frontiers in Neuroscience, 15, 761826. Kostadinov, D., Beau, M., Blanco-Pozo, M., & Häusser, M. (2019). Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nature Neuroscience, 22(6), 950–962. doi:10.1038/s41593-019-0381-8 Kostadinov, D., Beau, M., Pozo, M. B., & Häusser, M. (2019). Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nature Neuroscience, 22(6), 950–962. doi:10.1038/s41593-019-0381-8 Küper, M., Kaschani, P., Thürling, M., Stefanescu, M. R., Burciu, R. G., Göricke, S., Maderwald, S., Ladd, M. E., Hautzel, H., & Timmann, D. (2016). Cerebellar fMRI activation increases with increasing working memory demands. The Cerebellum, 15(3), 322–335. Lachaux, J., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8(4), 194–208. Laurens, J., Meng, H., & Angelaki, D. E. (2013). Computation of linear acceleration through an internal model in the macaque cerebellum. Nature Neuroscience, 16(11), 1701–1708. doi:10.1038/nn.3530 Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? In Behavioral Neuroscience (Vol. 100, Issue 4, pp. 443–454). American Psychological Association. doi:10.1037/0735-7044.100.4.443 Leznik, E., & Llinás, R. (2005). Role of gap junctions in synchronized neuronal oscillations in the inferior olive. Journal of Neurophysiology, 94(4), 2447–2456. doi:10.1152/JN.00353.2005/ASSET/IMAGES/LARGE/Z9K0090549280006.JPEG Lin, Q., Manley, J., Helmreich, M., Schlumm, F., Li, J. M., Robson, D. N., Engert, F., Schier, A., Nöbauer, T., & Vaziri, A. (2020). Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level. Cell, 180(3), 536-551.e17. doi:10.1016/j.cell.2019.12.018 Middleton, F. A., & Strick, P. L. (2001). Cerebellar Projections to the Prefrontal Cortex of the Primate. The Journal of Neuroscience, 21(2), 700 LP – 712. doi:10.1523/JNEUROSCI.21-02-00700.2001 Molineux, M. L., McRory, J. E., McKay, B. E., Hamid, J., Mehaffey, W. H., Rehak, R., Snutch, T. P., Zamponi, G. W., & Turner, R. W. (2006). Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5555–5560. doi:10.1073/PNAS.0601261103/SUPPL_FILE/01261FIG7.JPG Murdoch, B. E. (2010). The cerebellum and language: historical perspective and review. Cortex, 46(7), 858–868. Nair-Roberts, R. G., Chatelain-Badie, S. D., Benson, E., White-Cooper, H., Bolam, J. P., & Ungless, M. A. (2008). Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience, 152(4), 1024–1031. Pedroarena, C. M. (2010). Mechanisms Supporting Transfer of Inhibitory Signals into the Spike Output of Spontaneously Firing Cerebellar Nuclear Neurons In Vitro. The Cerebellum, 9(1), 67–76. doi:10.1007/s12311-009-0153-1 Person, A. L., & Raman, I. M. (2012). Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature, 481(7382), 502–505. Petersen, S E, Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585–589. doi:10.1038/331585a0 Petersen, Steven E, Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1989). Positron Emission Tomographic Studies of the Processing of Singe Words. Journal of Cognitive Neuroscience, 1(2), 153–170. doi:10.1162/jocn.1989.1.2.153 Proville, R. D., Spolidoro, M., Guyon, N., Dugué, G. P., Selimi, F., Isope, P., Popa, D., & Léna, C. (2014). Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. 17(9). doi:10.1038/nn.3773 Rutledge, R. B., Lazzaro, S. C., Lau, B., Myers, C. E., Gluck, M. A., & Glimcher, P. W. (2009). Dopaminergic drugs modulate learning rates and perseveration in Parkinson’s patients in a dynamic foraging task. Journal of Neuroscience, 29(48), 15104–15114. Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005). Representation of action-specific reward values in the striatum. Science, 310(5752), 1337–1340. Schmahmann, J. D. (1996). From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4(3), 174–198. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. Sendhilnathan, N., Ipata, A. E., & Goldberg, M. E. (2020). Neural Correlates of Reinforcement Learning in Mid-lateral Cerebellum. Neuron, 106(1), 188-198.e5. doi:10.1016/j.neuron.2019.12.032 Simon, H., LeMoal, M., & Calas, A. (1979). Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H]leucine and horseradish peroxidase. Brain Research, 178(1), 17–40. doi:10.1016/0006-8993(79)90085-4 Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The Cerebellum : Adaptive Prediction for Movement and Cognition. Trends in Cognitive Sciences, 21(5), 313–332. doi:10.1016/j.tics.2017.02.005 Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., & Janak, P. H. (2013). A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 16(7), 966. Stephenson-Jones, M., Yu, K., Ahrens, S., Tucciarone, J. M., vanHuijstee, A. N., Mejia, L. A., Penzo, M. A., Tai, L.-H., Wilbrecht, L., & Li, B. (2016). A basal ganglia circuit for evaluating action outcomes. Nature, 539(7628), 289–293. Stoodley, C. J. (2012). The cerebellum and cognition: evidence from functional imaging studies. The Cerebellum, 11(2), 352–365. Stopper, C. M., Maric, T. L., Montes, D. R., Wiedman, C. R., & Floresco, S. B. (2014). Overriding phasic dopamine signals redirects action selection during risk/reward decision making. Neuron, 84(1), 177–189. Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434. Sultan, F., Czubayko, U., & Thier, P. (2003). Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis. Journal of Comparative Neurology, 455(2), 139–155. Tadayonnejad, R., Anderson, D., Molineux, M. L., Mehaffey, W. H., Jayasuriya, K., & Turner, R. W. (2010). Rebound discharge in deep cerebellar nuclear neurons in vitro. The Cerebellum, 9(3), 352–374. Tan, K. R., Yvon, C., Turiault, M., Mirzabekov, J. J., Doehner, J., Labouèbe, G., Deisseroth, K., Tye, K. M., & Lüscher, C. (2012). GABA neurons of the VTA drive conditioned place aversion. Neuron, 73(6), 1173–1183. Tang, T., Suh, C. Y., Blenkinsop, T. A., & Lang, E. J. (2016). Synchrony is Key: Complex Spike Inhibition of the Deep Cerebellar Nuclei. The Cerebellum, 15(1), 10–13. doi:10.1007/s12311-015-0743-z Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G. D., Bonci, A., DeLecea, L., & Deisseroth, K. (2009). Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science, 324(5930), 1080–1084. Tsutsumi, S., Chadney, O., Yiu, T. L., Bäumler, E., Faraggiana, L., Beau, M., & Häusser, M. (2020a). Purkinje Cell Activity Determines the Timing of Sensory-Evoked Motor Initiation. Cell Reports, 33(12). doi:10.1016/j.celrep.2020.108537 Tsutsumi, S., Chadney, O., Yiu, T. L., Bäumler, E., Faraggiana, L., Beau, M., & Häusser, M. (2020b). Purkinje Cell Activity Determines the Timing of Sensory-Evoked Motor Initiation. Cell Reports, 33(12), 108537. doi:10.1016/J.CELREP.2020.108537 Uusisaari, M., & Knöpfel, T. (2011). Functional classification of neurons in the mouse lateral cerebellar nuclei. The Cerebellum, 10(4), 637–646. Uusisaari, M., Obata, K., & Knopfel, T. (2007). Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Journal of Neurophysiology, 97(1), 901–911. van Hemmen, J. L. (2013). Vector strength after Goldberg, Brown, and von Mises: biological and mathematical perspectives. Biological Cybernetics, 107, 385–396. vanZessen, R., Phillips, J. L., Budygin, E. A., & Stuber, G. D. (2012). Activation of VTA GABA neurons disrupts reward consumption. Neuron, 73(6), 1184–1194. Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J., & Luo, L. (2017a). Cerebellar granule cells encode the expectation of reward. Nature, 544(7648), 96–100. doi:10.1038/nature21726 Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J., & Luo, L. (2017b). Cerebellar granule cells encode the expectation of reward. Nature, 544(7648), 96–100. doi:10.1038/nature21726 Wagner, M. J., Savall, J., Hernandez, O., Mel, G., Inan, H., Rumyantsev, O., Lecoq, J., Kim, T. H., Li, J. Z., & Ramakrishnan, C. (2021). A neural circuit state change underlying skilled movements. Cell, 184(14), 3731–3747. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A., & Uchida, N. (2012). Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74(5), 858–873. Wijnen, B., Hunt, E. J., Anzalone, G. C., & Pearce, J. M. (2014). Open-source syringe pump library. PLoS ONE, 9(9). doi:10.1371/journal.pone.0107216 Wimmer, G. E., & Shohamy, D. (2012). Preference by Association: How Memory Mechanisms in the Hippocampus Bias Decisions. Science, 338(6104), 270 LP – 273. doi:10.1126/science.1223252 Wirth, S., Yanike, M., Frank, L. M., Smith, A. C., Brown, E. N., & Suzuki, W. A. (2003). Single Neurons in the Monkey Hippocampus and Learning of New Associations. Science, 300(5625), 1578 LP – 1581. doi:10.1126/science.1084324 Xiao, L., Bornmann, C., Hatstatt-Burklé, L., & Scheiffele, P. (2018). Regulation of striatal cells and goal-directed behavior by cerebellar outputs. Nature Communications, 9(1), 3133. doi:10.1038/s41467-018-05565-y Yamaguchi, T., Sheen, W., & Morales, M. (2007). Glutamatergic neurons are present in the rat ventral tegmental area. European Journal of Neuroscience, 25(1), 106–118. Yang, Y., & Lisberger, S. G. (2014). Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature, 510(7506), 529–532 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93038 | - |
| dc.description.abstract | 在生活中,酬賞最大化被視為決策最具體的目標,它讓我們面對環境變化時得以採取相應的行動。因此,了解腦內的神經元機制如何處理酬賞經驗是極重要且需解答的課題。在過往的研究中,中腦多巴胺神經系統被認為是酬賞訊息處理中樞,它會直接以增加神經元放電的形式編碼酬賞。而有研究表明小腦也參與在酬賞處理系統當中:小腦深部核的神經元能夠直接支配中腦腹側被蓋區的多巴胺神經元。然而,我們對於這個酬賞迴路所知仍然甚少,其神經編碼如何直接處理酬賞訊?如何影響多巴胺神經元放電?以及如何改變得到酬賞後的相應行為的因果關係仍然欠缺說明。在本研究中,我們首先發現了小腦深部核的神經元能夠用一種特定的空間編碼方式來處理酬賞訊息。我們利用小鼠酬賞型決策行為模型與活體電生理紀錄來揭密小腦如何編碼酬賞。我們發現,在酬賞出現的當下,小腦深部核的神經元群體出現了空間上同步性,而非依靠單一神經元增加放電頻率來編碼。實驗進一步發現在此小腦至中腦的迴路中,局部場電位和軸突末端的鈣離子訊號都同時反映了酬賞編碼。最後,我們應用光遺傳學及直流電注射的方式改變小腦深部核神經元的空間同步性探討神經元與行為的因果關係。有趣的是,放電同步性足夠直接的影響酬賞、並立即改變決策行為。綜合以上研究結果,我們除了支持了該迴路能夠直接處理酬賞訊息;更重要的,我們提出了一種新型小腦神經元的空間放電機制,說明了它是如何調控多巴胺酬賞系統。 | zh_TW |
| dc.description.abstract | Reward-based learning is a fundamental mechanism to optimize behavioral responses to the rapidly changing outside world. Mounting evidence has linked the cerebellar contribution to the midbrain dopaminergic reward system, which directly regulates rewarding behaviors. However, the precise neuronal coding of deep cerebellar nuclei (DCN)-to-midbrain ventral tegmental area (VTA) projection and how it regulates reward-driven behaviors remained unclear. Here we report that reward prediction error (RPE) was carried by DCN-to-VTA projection by measuring axonal terminal calcium dynamics as mice performed a real-time two-choice foraging task. Optogenetic inhibition of DCN-to-VTA projection dampened the RPE coding and disturbed reward driven choice behaviors. To elaborate how and why, we measured the firing of DCN neurons by in-vivo electrophysiological recording. We report that neurons in the DCN encode RPE with spatial synchrony under single trial level. We observed a precise instantaneous spatial resetting of DCN neuronal ensembles under reward RPE encoding, but not an increase of DCN single-unit firing rate. Time-frequency features of local field potentials (LFPs) in the DCN show that low frequency LFPs exhibit strong oscillation exclusively during reward encoding period, supporting the instantaneous spatial synchrony during rewarding. Using optogenetic approaches and direct DC current injection to manipulate DCN-to-VTA projection, we found that suppression of spatial synchrony of DCN neurons decreased immediate RPE coding and was sufficient to perturb real-time choice behaviors. Dendritic calcium activities of cerebellar Purkinje cells also exhibited increased spatial synchrony in single reward trial, suggesting a potential source for generating spatial synchrony in the cerebellum. Our results provide evidence that real-time reward encoding is organized into the cerebellum through a novel spatial synchrony mechanism, directly orchestrating dynamics of dopamine reward signals. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-15T16:06:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-15T16:06:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 序言 i
摘要 iii Abstract v 1. Introduction 1 1.1 The Cognitive Cerebellum 1 1.2 Reward Signals in the Cerebellum 3 1.3 Cerebellum and the Midbrain Reward System 9 1.4 Main Objective of the Research 11 2. Materials and Methods 15 2.1 Animals 15 2.2 Viral vectors and Tracer 16 2.3 Stereotaxic Surgery 17 2.4 Two-choice Foraging Task 19 2.5 Fiber Photometry Recording 22 2.6 Electrocorticography (ECoG) Recording 24 2.7 In-vivo Extracellular Electrophysiology Recording 25 2.8 Optogenetics 30 2.9 Two-photon Calcium Imaging 31 2.10 TRAPing (Targeted Recombination in Active Populations) 34 2.11 Histology and Brain clearing 35 2.12 Quantification and Statistical Analysis 36 3. Results 39 3.1 Rewarding information are encoded in VTA-projecting DCN axonal dynamics with single trial level 40 3.2 The DCN-to-VTA projection is necessary for midbrain reward encoding 42 3.3 The DCN LFP forms frequency-dependent synchrony during rewarding period 43 3.4 Frequency coding or temporal coding cannot explain DCN reward encoding 44 3.5 DCN bursting makes little contribution to the reward encoding 46 3.6 Instantaneous spatial resetting of the neuronal activities as a mechanism for reward coding in DCN 47 3.7 Manipulation of DCN spatial synchrony during reward encoding perturbs reward-based choice behaviors 50 3.8 Spatial synchronization of Purkinje dendritic activity during rewarding period 53 4. Discussion 55 5. References 67 Figures 85 Appendix 103 | - |
| dc.language.iso | en | - |
| dc.subject | 小腦深部核 | zh_TW |
| dc.subject | 腹側被蓋區 | zh_TW |
| dc.subject | 多巴胺 | zh_TW |
| dc.subject | 酬賞 | zh_TW |
| dc.subject | 時空編碼 | zh_TW |
| dc.subject | 同步性 | zh_TW |
| dc.subject | midbrain | en |
| dc.subject | cerebellum | en |
| dc.subject | spatial synchrony | en |
| dc.subject | spatial coding | en |
| dc.subject | reward | en |
| dc.subject | dopamine | en |
| dc.title | 探討小腦神經空間編碼如何影響中腦多巴胺訊息及酬賞系統 | zh_TW |
| dc.title | Cerebellar spatial coding for orchestrating dopamine signals in the midbrain reward system | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 林宛蓁 | zh_TW |
| dc.contributor.coadvisor | Wan-Chen Lin | en |
| dc.contributor.oralexamcommittee | 林士傑;吳玉威;賴文崧 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Chieh Lin;Yu-Wei Wu;Wen-Sung Lai | en |
| dc.subject.keyword | 小腦深部核,腹側被蓋區,多巴胺,酬賞,時空編碼,同步性, | zh_TW |
| dc.subject.keyword | cerebellum,midbrain,dopamine,reward,spatial coding,spatial synchrony, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202401154 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-06-24 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 跨領域神經科學國際研究生博士學位學程 | - |
| 顯示於系所單位: | 跨領域神經科學國際研究生博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 28.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
