Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93026
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚諤zh_TW
dc.contributor.advisorEh Tanen
dc.contributor.author陳致信zh_TW
dc.contributor.authorCih-Hsin Chenen
dc.date.accessioned2024-07-12T16:20:23Z-
dc.date.available2024-07-13-
dc.date.copyright2024-07-12-
dc.date.issued2024-
dc.date.submitted2024-07-11-
dc.identifier.citationBaziotis, I., Tsai, C. ‐H., Ernst, W. G., Jahn, B. ‐M., & Iizuka, Y. (2017). New P–T constraints on the Tamayen glaucophane‐bearing rocks, eastern Taiwan: Perple_X modelling results and geodynamic implications. Journal of Metamorphic Geology, 35(1), 35–54. https://doi.org/10.1111/jmg.12218
Briais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299–6328. https://doi.org/10.1029/92JB02280
Brown, D., Herrington, R. J., & Alvarez-Marron, J. (2011). Processes of Arc–Continent Collision in the Uralides. In D. Brown & P. D. Ryan (Eds.), Arc-Continent Collision (pp. 311–340). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-88558-0_11
Burg, J.-P. (2011). The Asia–Kohistan–India Collision: Review and Discussion. In D. Brown & P. D. Ryan (Eds.), Arc-Continent Collision (pp. 279–309). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-88558-0_10
Chemenda, A. I., Yang, R. K., Hsieh, C.-H., & Groholsky, A. L. (1997). Evolutionary model for the Taiwan collision based on physical modelling. Tectonophysics, 274(1–3), 253–274. https://doi.org/10.1016/S0040-1951(97)00025-5
Chemenda, A. I., Yang, R.-K., Stephan, J.-F., Konstantinovskaya, E. A., & Ivanov, G. M. (2001). New results from physical modelling of arc–continent collision in Taiwan: Evolutionary model. Tectonophysics, 333(1–2), 159–178. https://doi.org/10.1016/S0040-1951(00)00273-0
Chen, W.-S., Chung, S.-L., Chou, H.-Y., Zugeerbai, Z., Shao, W.-Y., & Lee, Y.-H. (2017). A reinterpretation of the metamorphic Yuli belt: Evidence for a middle‐late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188–206.
Chen, Y., & Morgan, W. J. (1990). A nonlinear rheology model for mid‐ocean ridge axis topography. Journal of Geophysical Research: Solid Earth, 95(B11), 17583–17604. https://doi.org/10.1029/JB095iB11p17583
Cheng, W.-B. (2009). Tomographic imaging of the convergent zone in Eastern Taiwan—A subducting forearc sliver revealed? Tectonophysics, 466(3–4), 170–183. https://doi.org/10.1016/j.tecto.2007.11.010
Clift, P. D., & Lorenzo, J. M. (1999). Flexural unloading and uplift along the Côte d’Ivoire-Ghana Transform Margin, equatorial Atlantic. Journal of Geophysical Research, 104, 25,257-25,274. https://doi.org/10.1029/1999JB900247
Clift, P. D., Pecher, I., Kukowski, N., & Hampel, A. (2003). Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics, 22(3), 2002TC001386. https://doi.org/10.1029/2002TC001386
Cloos, M., Sapiie, B., Quarles Van Ufford, A., Weiland, R. J., Warren, P. Q., & McMahon, T. P. (2005). Collisional delamination in New Guinea: The geotectonics of subducting slab breakoff. In M. Cloos, B. Sapiie, A. Q. Van Ufford, R. J. Weiland, P. Q. Warren, & T. P. McMahon, Collisional Delamination in New Guinea: The Geotectonics of Subducting Slab Breakoff. Geological Society of America. https://doi.org/10.1130/2005.2400
Conand, C., Mouthereau, F., Ganne, J., Lin, A. T., Lahfid, A., Daudet, M., Mesalles, L., Giletycz, S., & Bonzani, M. (2020). Strain Partitioning and Exhumation in Oblique Taiwan Collision: Role of Rift Architecture and Plate Kinematics. Tectonics, 39(4), e2019TC005798. https://doi.org/10.1029/2019TC005798
Cundall, P. (1988). Numerical experiments on localization in frictional materials. Proc. of the workshop on limit analysis and bifurcation theory.
Deschamps, A., Monié, P., Lallemand, S., Hsu, S.-K., & Yeh, K. Y. (2000). Evidence for Early Cretaceous oceanic crust trapped in the Philippine Sea Plate. Earth and Planetary Science Letters, 179(3–4), 503–516. https://doi.org/10.1016/S0012-821X(00)00136-9
Doo, W.-B., Hsu, S.-K., Yeh, Y.-C., Tsai, C.-H., & Chang, C.-M. (2015). Age and tectonic evolution of the northwest corner of the West Philippine Basin. Marine Geophysical Research, 36(2–3), 113–125. https://doi.org/10.1007/s11001-014-9234-8
Eakin, D. H., McIntosh, K. D., Van Avendonk, H. J. A., Lavier, L., Lester, R., Liu, C., & Lee, C. (2014). Crustal‐scale seismic profiles across the Manila subduction zone: The transition from intraoceanic subduction to incipient collision. Journal of Geophysical Research: Solid Earth, 119(1), 1–17. https://doi.org/10.1002/2013JB010395
Fan, J., & Zhao, D. (2021). P‐wave Tomography and Azimuthal Anisotropy of the Manila‐Taiwan‐Southern Ryukyu Region. Tectonics, 40(2), e2020TC006262. https://doi.org/10.1029/2020TC006262
Hacker, B. R., Abers, G. A., & Peacock, S. M. (2003). Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H 2 O contents. Journal of Geophysical Research: Solid Earth, 108(B1), 2001JB001127. https://doi.org/10.1029/2001JB001127
Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1–3), 1–16. https://doi.org/10.1016/0040-1951(86)90004-1
Howell, D. G. (1989). Tectonics of Suspect Terranes: Mountain building and continental growth. Springer Netherlands.
Huang, H.-H., & Wang, Y. (2022). Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model. Terrestrial, Atmospheric and Oceanic Sciences, 33(1), 17. https://doi.org/10.1007/s44195-022-00017-z
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
Huang, P., Wei, C., Dong, J., & Zhang, J. (2023). Two-stage exhumation of high–P rocks from the Yuli Belt, Eastern Taiwan: Insights from the metamorphic evolution in subduction channels. Lithos, 440–441, 107056. https://doi.org/10.1016/j.lithos.2023.107056
Hung, S.-H., Shao, S.-C., Ke, J.-J., Reddy, R., Tseng, T.-L., Lin, P. P., & Tan, E. (2023). Exploring the Lithospheric Structure in Transition Between the Eurasian Plate Subduction to Luzon Arc Collision Using Amphibious SALTUE Array.
Hyndman, R. D., & Peacock, S. M. (2003). Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212(3–4), 417–432. https://doi.org/10.1016/S0012-821X(03)00263-2
Jicha, B. R., & Kay, S. M. (2018). Quantifying arc migration and the role of forearc subduction erosion in the central Aleutians. Journal of Volcanology and Geothermal Research, 360, 84–99. https://doi.org/10.1016/j.jvolgeores.2018.06.016
KARIG, D. E., CARDWELL, R. K., MOORE, G. F., & MOORE, D. G. (1978). Late Cenozoic subduction and continental margin truncation along the northern Middle America Trench. GSA Bulletin, 89(2), 265–276. https://doi.org/10.1130/0016-7606(1978)89<265:LCSACM>2.0.CO;2
Keppie, J. D., Morán-Zenteno, D. J., Martiny, B., & González-Torres, E. (2009). Synchronous 29-19 Ma arc hiatus, exhumation and subduction of forearc in southwestern Mexico. Geological Society, London, Special Publications, 328(1), 169–179. https://doi.org/10.1144/SP328.7
Keyser, W., Tsai, C.-H., Iizuka, Y., Oberhänsli, R., & Ernst, W. G. (2016). High-pressure metamorphism in the Chinshuichi area, Yuli belt, eastern Taiwan. Tectonophysics, 692, 191–202. https://doi.org/10.1016/j.tecto.2015.09.012
Kirby, S. H. (1983). Rheology of the lithosphere. Reviews of Geophysics, 21(6), 1458–1487. https://doi.org/10.1029/RG021i006p01458
Kojitani, H., & Akaogi, M. (1997). Melting enthalpies of mantle peridotite: Calorimetric determinations in the system CaO-MgO-Al2O3-SiO2 and application to magma generation. Earth and Planetary Science Letters, 153(3–4), 209–222. https://doi.org/10.1016/S0012-821X(97)00186-6
Konstantinovskaya, E. (2011). Early Eocene Arc–Continent Collision in Kamchatka, Russia: Structural Evolution and Geodynamic Model. In D. Brown & P. D. Ryan (Eds.), Arc-Continent Collision (pp. 247–277). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-88558-0_9
Kuo, B.-Y., Chi, W.-C., Lin, C.-R., Chang, E. T.-Y., Collins, J., & Liu, C.-S. (2009). Two-station measurement of Rayleigh-wave phase velocities for the Huatung basin, the westernmost Philippine Sea, with OBS: Implications for regional tectonics. Geophysical Journal International, 179(3), 1859–1869. https://doi.org/10.1111/j.1365-246X.2009.04391.x
Kuo‐Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three‐dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(B6), 2011JB009108. https://doi.org/10.1029/2011JB009108
Lai, L. S.-H., Dorsey, R. J., Horng, C.-S., Chi, W.-R., Shea, K.-S., & Yen, J.-Y. (2021). Polygenetic mélange in the retrowedge foredeep of an active arc-continent collision, Coastal Range of eastern Taiwan. Sedimentary Geology, 418, 105901. https://doi.org/10.1016/j.sedgeo.2021.105901
Lai, L. S.-H., Dorsey, R. J., Horng, C.-S., Chi, W.-R., Shea, K.-S., & Yen, J.-Y. (2022). Extremely rapid up-and-down motions of island arc crust during arc-continent collision. Communications Earth & Environment, 3(1), 100. https://doi.org/10.1038/s43247-022-00429-2
Lewis, J. C., O’Hara, D. J., & Rau, R. (2015). Seismogenic strain across the transition from fore‐arc slivering to collision in southern Taiwan. Journal of Geophysical Research: Solid Earth, 120(6), 4539–4555. https://doi.org/10.1002/2015JB011906
Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453–478. https://doi.org/10.1046/j.1365-2117.2003.00215.x
Lin, A. T., Yao, B., Hsu, S.-K., Liu, C.-S., & Huang, C.-Y. (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1–2), 28–42. https://doi.org/10.1016/j.tecto.2008.11.004
Lundberg, N., & Dorsey, R. J. (1988). Synorogenic Sedimentation and Subsidence in a Plio-Pleistocene Collisional Basin, Eastern Taiwan. In K. L. Kleinspehn & C. Paola (Eds.), New Perspectives in Basin Analysis (pp. 265–280). Springer New York. https://doi.org/10.1007/978-1-4612-3788-4_13
Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C.-Y., Liu, C.-S., Schnuerle, P., Angelier, J., Collot, J. Y., Deffontaines, B., Fournier, M., Hsu, S. K., Le Formal, J. P., Liu, S. Y., Sibuet, J. C., Thareau, N., & Wang, F. (2002). Arc-continent collision in Taiwan: New marine observations and tectonic evolution. In T. B. Byrne & C.-S. Liu, Geology and geophysics of an arc-continent collision, Taiwan. Geological Society of America. https://doi.org/10.1130/0-8137-2358-2.187
Malavieille, J., & Trullenque, G. (2009). Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling. Tectonophysics, 466(3–4), 377–394. https://doi.org/10.1016/j.tecto.2007.11.016
McIntosh, K., Nakamura, Y., Wang, T.-K., Shih, R.-C., Chen, A., & Liu, C.-S. (2005). Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics, 401(1–2), 23–54. https://doi.org/10.1016/j.tecto.2005.02.015
Morán-Zenteno, D. J., Corona-Chavez, P., & Tolson, G. (1996). Uplift and subduction erosion in southwestern Mexico since the Oligocene: Pluton geobarometry constraints. Earth and Planetary Science Letters, 141(1–4), 51–65. https://doi.org/10.1016/0012-821X(96)00067-2
Nichols, G. T., Wyllie, P. J., & Stern, C. R. (1994). Subduction zone melting of pelagic sediments constrained by melting experiments. Nature, 371(6500), 785–788. https://doi.org/10.1038/371785a0
Nissen, S. S., Hayes, D. E., Bochu, Y., Zeng, W., Chen, Y., & Nu, X. (1995). Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11), 22447–22483. https://doi.org/10.1029/95JB01868
Percy P. H. Chen (2), Zhi Yuong Che. (1993). Sequence Stratigraphy and Continental Margin Development of the Northwestern Shelf of the South China Sea. AAPG Bulletin, 77. https://doi.org/10.1306/BDFF8D76-1718-11D7-8645000102C1865D
Pin, Y., Di, Z., & Zhaoshu, L. (2001). A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1), 1–21. https://doi.org/10.1016/S0040-1951(01)00062-2
Pindell, J. L., Cande, S. C., Pitman, W. C., Rowley, D. B., Dewey, J. F., Labrecque, J., & Haxby, W. (1988). A plate-kinematic framework for models of Caribbean evolution. Tectonophysics, 155, 121–138. https://doi.org/10.1016/0040-1951(88)90262-4
Qiu, X., Ye, S., Wu, S., Shi, X., Zhou, D., Xia, K., & Flueh, E. R. (2001). Crustal structure across the Xisha Trough, northwestern South China Sea. Tectonophysics, 341(1–4), 179–193. https://doi.org/10.1016/S0040-1951(01)00222-0
Ranalli, G. (1995). Rheology of the earth (2nd ed). Chapman & Hall.
Robertson, A. H. F., Parlak, O., & Ustaömer, T. (2009). Melange genesis and ophiolite emplacement related to subduction of the northern margin of the Tauride–Anatolide continent, central and western Turkey. Geological Society, London, Special Publications, 311(1), 9–66. https://doi.org/10.1144/SP311.2
Ross, M. I., & Scotese, C. R. (1988). A hierarchical tectonic model of the Gulf of Mexico and Caribbean region. Tectonophysics, 155, 139–168. https://doi.org/10.1016/0040-1951(88)90263-6
Seno, T. (1977). The instantaneous rotation vector of the Philippine sea plate relative to the Eurasian plate. Tectonophysics, 42(2–4), 209–226. https://doi.org/10.1016/0040-1951(77)90168-8
Seno, T., Stein, S., & Gripp, A. E. (1993). A model for the motion of the Philippine Sea Plate consistent with NUVEL‐1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10), 17941–17948. https://doi.org/10.1029/93JB00782
Shyu, J. B. H., Chang, C.-H., & Huang, H.-H. (2011). Tectonic erosion and the removal of forearc lithosphere during arc-continent collision: Evidence from recent earthquake sequences and tomography results in eastern Taiwan. Journal of Asian Earth Sciences, 42(3), 415–422. https://doi.org/10.1016/j.jseaes.2011.05.015
Sibuet, J.-C., Hsu, S.-K., Le Pichon, X., Le Formal, J.-P., Reed, D., Moore, G., & Liu, C.-S. (2002). East Asia plate tectonics since 15 Ma: Constraints from the Taiwan region. Tectonophysics, 344(1–2), 103–134. https://doi.org/10.1016/S0040-1951(01)00202-5
Sleep, N. H., & Warren, J. M. (2014). Effect of latent heat of freezing on crustal generation at low spreading rates. Geochemistry, Geophysics, Geosystems, 15(8), 3161–3174. https://doi.org/10.1002/2014GC005423
Sun, W.-F., Pan, S.-Y., Huang, C.-M., Guan, Z.-K., Yen, I.-C., Ho, C.-W., Chi, T.-C., Ku, C.-S., Huang, B.-S., Fu, C.-C., & Kuo-Chen, H. (2024). Deep learning-based earthquake catalog reveals the seismogenic structures of the 2022 MW 6.9 Chihshang earthquake sequence. Terrestrial, Atmospheric and Oceanic Sciences, 35(1), 5. https://doi.org/10.1007/s44195-024-00063-9
Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China (Taiwan), 4, 67–89.
Suppe, J. (1984). Kinematics of arc-continental collision, flipping of subduction, and back-arc spreading near Taiwan. Memoir of the Geological Society of China (Taiwan), 6, 21–33.
Tan, E. (2020). Subduction of transitional crust at the Manila Trench and its geophysical implications. Journal of Asian Earth Sciences, 187, 104100. https://doi.org/10.1016/j.jseaes.2019.104100
Tan, E., Lavier, L. L., Van Avendonk, H. J. A., & Heuret, A. (2012). The role of frictional strength on plate coupling at the subduction interface: THE ROLE OF FRICTIONAL STRENGTH. Geochemistry, Geophysics, Geosystems, 13(10), n/a-n/a. https://doi.org/10.1029/2012GC004214
Teng, L. S., & Lin, A. T. (2004). Cenozoic tectonics of the China continental margin: Insights from Taiwan. Geological Society, London, Special Publications, 226(1), 313–332. https://doi.org/10.1144/GSL.SP.2004.226.01.17
Tensi, J., Mouthereau, F., & Lacombe, O. (2006). Lithospheric bulge in the West Taiwan Basin. Basin Research, 18(3), 277–299. https://doi.org/10.1111/j.1365-2117.2006.00296.x
Van Avendonk, H. J. A., Kuo‐Chen, H., McIntosh, K. D., Lavier, L. L., Okaya, D. A., Wu, F. T., Wang, C. Y., Lee, C. S., & Liu, C. S. (2014). Deep crustal structure of an arc‐continent collision: Constraints from seismic traveltimes in central Taiwan and the Philippine Sea. Journal of Geophysical Research: Solid Earth, 119(11), 8397–8416. https://doi.org/10.1002/2014JB011327
Wang, T. K., Chen, M.-K., Lee, C.-S., & Xia, K. (2006). Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412(3–4), 237–254. https://doi.org/10.1016/j.tecto.2005.10.039
Wang, Z., Zhao, D., Wang, J., & Kao, H. (2006). Tomographic evidence for the Eurasian lithosphere subducting beneath south Taiwan. Geophysical Research Letters, 33(18), 2006GL027166. https://doi.org/10.1029/2006GL027166
Wei, C. J., Powell, R., & Clarke, G. L. (2004). Calculated phase equilibria for low‐ and medium‐pressure metapelites in the KFMASH and KMnFMASH systems. Journal of Metamorphic Geology, 22(5), 495–508. https://doi.org/10.1111/j.1525-1314.2004.00530.x
Wu, J., Suppe, J., Lu, R., & Kanda, R. (2016). Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. Journal of Geophysical Research: Solid Earth, 121(6), 4670–4741. https://doi.org/10.1002/2016JB012923
Wu, Y.-M., Chang, C.-H., Zhao, L., Teng, T.-L., & Nakamura, M. (2008). A Comprehensive Relocation of Earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America, 98(3), 1471–1481. https://doi.org/10.1785/0120070166
Yamato, P., Mouthereau, F., & Burov, E. (2009). Taiwan mountain building: Insights from 2-D thermomechanical modelling of a rheologically stratified lithosphere. Geophysical Journal International, 176(1), 307–326. https://doi.org/10.1111/j.1365-246X.2008.03977.x
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1–3), 41–59. https://doi.org/10.1016/S0040-1951(96)00297-1
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93026-
dc.description.abstract臺灣地處歐亞大陸板塊邊緣並與菲律賓海板塊交界,菲律賓海板塊以每年70到80毫米的速度向西北方向移動並與歐亞大陸板塊聚合,形成呂宋島弧與臺灣造山帶。但在臺灣造山帶中段呂宋島弧與歐亞大陸邊緣直接相連,缺失弧前基盤,此弧前基盤缺失現象亦廣泛出現於類似板塊聚合區域。過去研究認為此弧前基盤已隱沒至於菲律賓海板塊與歐亞大陸板塊之間。為了探討弧前基盤隱沒的機制,我們利用熱-力學耦合數值模擬,並結合地質資料,模擬岩石圈尺度的板塊隱沒到碰撞過程來探討臺灣造山帶中段弧前基盤隱沒的動力學機制。
模擬結果表明,當隱沒板塊由海洋地殼過渡到大陸地殼時,因大陸地殼材質密度較輕,不易隱沒而造山形成的巨大塊體阻擋菲律賓海板塊向西北前進,讓弧前地殼撓曲下凹形成一個弧前盆地,盆地內開始堆積大量的沉積物。直到盆地中心破裂形成弧前盆地斷層,盆地東側島弧區域逆衝至盆地西側弧前基盤之上方,推擠盆地內沉積物快速抬升,最終弧前基盤隱沒至菲律賓海板塊之下並形成中央山脈斷層。在此模型解釋了弧前基盤缺失的原因、縱谷斷層形成的時間點,以及海岸山脈沉積物記錄到的劇烈上下運動。
zh_TW
dc.description.abstractTaiwan is located at the edge of the Eurasian plate and borders the Philippine Sea plate. The Philippine Sea plate is moving northwestward at a speed of 70 to 80 mm/yr and is converging with the Eurasian plate, forming the Luzon arc and the Taiwan orogenic belt. However, in the middle section of the Taiwan orogenic belt, the Luzon arc is directly adjacent to the edge of the Eurasian continental margin, and the forearc basement is missing. This phenomenon of missing forearc basement is also widely observed in similar plate convergence zones. Previous studies have suggested that this forearc basement has subducted between the Philippine Sea plate and the Eurasian plate. In order to explore the mechanism of forearc basement subduction, we used thermal-mechanical coupled numerical simulations combined with geological data to simulate the dynamic mechanism of forearc basement subduction in the middle section of the Taiwan orogenic belt.
The simulation results show that when the subducting plate transitions from oceanic crust to continental crust, the continental crust has a lower density and is not easily subducted. The huge mass formed by the orogeny blocks the Philippine Sea plate from moving northwestward, causing the forearc crust to bend concavely and form a forearc basin. The basin begins to accumulate a large amount of sedimentary material. Later, the center of the basin breaks to form a fault, the island arc to the east of the basin thrusts over the forearc basement, pushing the basin sediment to uplift rapidly, and finally the forearc basement subducts below the Philippine Sea plate.
This model explains the mechanism for the missing forearc basement, the timing of the formation of the Longitudinal Valley fault, and the dramatic up and down movements recorded in the sedimentary rocks of the Coastal Mountains.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-12T16:20:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-12T16:20:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
ABSTRACT iv
目 次 vi
圖 次 ix
表 次 xiii
第一章 前言 1
1.1 區域地質介紹 1
1.2 臺灣東部的層析成像 2
1.3 臺灣東部的物理模型實驗 7
1.4 臺灣東部的地質特徵 9
第二章 研究方法 15
2.1 數值模擬方法 15
2.1.1 運動方程式 15
2.1.2 岩石流變 15
2.1.3 相變 17
2.1.3.1 玄武岩―榴輝岩 17
2.1.3.2 橄欖岩—蛇紋岩 18
2.1.3.3 沉積物—沉積岩—變質沉積岩—片岩 19
2.1.4 岩漿 21
2.1.4.1 部分熔融 21
2.1.4.2 岩漿庫與火山 22
2.1.4.3 岩漿潛熱 23
2.1.4.4 岩漿對岩石圈的弱化 24
2.2 模型設置 25
2.2.1 模型構造設定 25
2.2.2 模型參數設定 28
第三章 結果 31
3.1 概述 31
3.1.1 結果分析 31
3.1.2 弧前基盤缺失成因探討 34
第四章 討論 44
4.1 弧前缺失模型 44
4.2 模型結果與觀測資料比對 50
4.2.1 地球物理資料比較 51
4.2.2 地震定位比較 53
4.2.3 震測資料比較 56
4.2.4 混合層中的高溫壓變質物質 59
4.2.5 弧前盆地中沉積物的抬升 62
4.3 模型敏感度分析 64
4.3.1 岩漿對弧前基盤隱沒的影響 64
4.3.2 岩漿對岩石圈弱化造成的影響 67
4.3.3 潛熱對弧前基盤隱沒的影響 69
4.3.4 過渡帶長度對模型的影響 72
4.4 未來展望 76
第五章 結論 77
參考資料 78
附錄A、 參考模型參數 89
附錄B、 不同參數對模型影響 99
-
dc.language.isozh_TW-
dc.subject弧前基盤缺失zh_TW
dc.subject弧陸碰撞zh_TW
dc.subject動力模型zh_TW
dc.subject數值模型zh_TW
dc.subject臺灣zh_TW
dc.subjectarc-continent collisionen
dc.subjectmissing forearc basementen
dc.subjectdynamic modelen
dc.subjectTaiwanen
dc.subjectnumerical modelen
dc.title臺灣弧前基盤缺失的熱-機械力學耦合數值模型zh_TW
dc.titleThermo-mechanical Models on the Missing Forearc Basement in Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor洪淑蕙zh_TW
dc.contributor.coadvisorShu-Huei Hungen
dc.contributor.oralexamcommittee李元希;王昱;郭陳澔zh_TW
dc.contributor.oralexamcommitteeYuan-Hsi Lee;Yu Wang;Hao Kuo-Chenen
dc.subject.keyword弧陸碰撞,弧前基盤缺失,動力模型,臺灣,數值模型,zh_TW
dc.subject.keywordarc-continent collision,missing forearc basement,dynamic model,Taiwan,numerical model,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202401695-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-lift2029-07-11-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
9.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved