Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93011
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文方zh_TW
dc.contributor.advisorWen-Fang Wuen
dc.contributor.author趙品茜zh_TW
dc.contributor.authorPin-Chien Chaoen
dc.date.accessioned2024-07-12T16:16:02Z-
dc.date.available2024-07-13-
dc.date.copyright2024-07-12-
dc.date.issued2024-
dc.date.submitted2024-06-20-
dc.identifier.citation英文文獻
[1] Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering & System Safety, 215, 107864.
[2] Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., & Hampapur, A. (2014). Improving rail network velocity: A machine learning approach to predictive maintenance. Transportation Research Part C: Emerging Technologies, 45, 17-26.
[3] Hsu, J. Y., Wang, Y. F., Lin, K. C., Chen, M. Y., & Hsu, J. H. Y. (2020). Wind turbine fault diagnosis and predictive maintenance through statistical process control and machine learning. IEEE Access, 8, 23427-23439.
[4] Gohel, H. A., Upadhyay, H., Lagos, L., Cooper, K., & Sanzetenea, A. (2020). Predictive maintenance architecture development for nuclear infrastructure using machine learning. Nuclear Engineering and Technology, 52(7), 1436-1442.
[5] Sahal, R., Breslin, J. G., & Ali, M. I. (2020). Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case. Journal of Manufacturing Systems, 54, 138-151.
[6] Matzka, S. (2020, September). Explainable artificial intelligence for predictive maintenance applications. In 2020 Third International Conference on Artificial Intelligence for Industries (ai4i) (pp. 69-74). IEEE.
[7] Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. P., & Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.
[8] Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A survey of predictive maintenance: Systems, purposes and approaches. ArXiv Preprint ArXiv: 1912.07383.
[9] Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889.
[10] Sajid, S., Haleem, A., Bahl, S., Javaid, M., Goyal, T., & Mittal, M. (2021). Data science applications for predictive maintenance and materials science in context to Industry 4.0. Materials Today: Proceedings, 45, 4898-4905.
[11] Wei, J., Dong, G., & Chen, Z. (2017). Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression. IEEE Transactions on Industrial Electronics, 65(7), 5634-5643.
[12] Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2021). Predictive maintenance in building facilities: A machine learning-based approach. Sensors, 21(4), 1044.
[13] Al-Aomar, R., AlTal, M., & Abel, J. (2023). A data-driven predictive maintenance model for hospital HVAC system with machine learning. Building Research & Information, 1-18.
[14] Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211.
[15] Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-702.
[16] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
[17] Wu, C., Wu, F., Qi, T., Huang, Y., & Xie, X. (2021). Fastformer: Additive attention can be all you need. ArXiv Preprint ArXiv:2108.09084.
[18] Dahouda, M. K., & Joe, I. (2021). A deep-learned embedding technique for categorical features encoding. IEEE Access, 9, 114381-114391.
[19] Raju, V. G., Lakshmi, K. P., Jain, V. M., Kalidindi, A., & Padma, V. (2020, August). Study the influence of normalization/transformation process on the accuracy of supervised classification. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 729-735). IEEE.
[20] Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern Recognition and Machine Learning. New York: springer.
[21] Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In International Conference on Intelligent Computing (pp. 878-887). Berlin, Heidelberg: Springer Berlin Heidelberg.
[22] Cakir, M., Guvenc, M. A., & Mistikoglu, S. (2021). The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system. Computers & Industrial Engineering, 151, 106948.
[23] Bowers, A. J., & Zhou, X. (2019). Receiver operating characteristic (ROC) area under the curve (AUC): A diagnostic measure for evaluating the accuracy of predictors of education outcomes. Journal of Education for Students Placed at Risk (JESPAR), 24(1), 20-46.
[24] Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299-310.
[25] Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society, 18(6), 275-285.
[26] Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(01), 20-28.
[27] Ahmad, G. N., Fatima, H., Ullah, S., & Saidi, A. S. (2022). Efficient medical diagnosis of human heart diseases using machine learning techniques with and without GridSearchCV. IEEE Access, 10, 80151-80173.
[28] Rigatti, S. J. (2017). Random forest. Journal of Insurance Medicine, 47(1), 31-39.
[29] Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
[30] Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31.
[31] Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. ArXiv Preprint ArXiv:1409.2329.
[32] Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31(7), 1235-1270.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93011-
dc.description.abstract近年來,隨著工業物聯網(industrial internet of things, IIOT)技術不斷的演進以及在工業4.0的影響下,預測性維護(predictive maintenance, PdM)逐漸取代部分傳統的維護方式,且隨著工業技術的不斷進步,機台設備相關運行狀態之數據量也呈指數級增長,單純的人工分析已無法有效地處理如此龐大的數據量,因此必須仰賴先進的數據科學和機器學習的技術以實現預測性維護。本研究旨在探討機器學習在機台設備健康狀態評估以及管理維護應用上的其他可能,期望能提出一種較有效率的機器學習模型應用於機台設備的管理維護。本研究先對數據資料進行預處理,包含重新編碼、資料特徵縮放、數據集劃分以及解決資料不平衡問題等,接著,再運用整理過之數據建構模型,而本研究採用三種演算法建構預測模型,分別為決策樹(decision tree, DF)、隨機森林(random forest, RF)以及循環神經網路(recurrent neural network, RNN)來進行預測,最後根據多個評估指標對各個模型的成效進行綜合比較與分析。本論文應用上述之研究流程分析一不具時間序列的單一時間點數據集,該數據集為機台設備在不同環境條件下,如大氣溫度(air temperature)、製程溫度(process temperature)等不同環境,透過感測器所偵測到的模擬狀態數據,將該數據集經由前述之研究流程可發現,隨機森林模型更加適合運用於不具時間序列的數據集。根據此研究成果可知,機台設備的維護管理可以藉由建立一套隨機森林模型來提高管理維護上的效率,而運用單一時間點的數據資料來訓練模型,也可以降低對數據完整度之需求,提高其實用性,更好的應用於機台設備的管理維護。zh_TW
dc.description.abstractIn recent years, with the continuous evolution of Industrial Internet of Things (IIoT) and the influence of Industry 4.0, predictive maintenance (PdM) has gradually replaced some parts of traditional maintenance methods. Additionally, with the ongoing advancements of industrial technology, the amount of data related to the operational status of machinery and equipment has grown exponentially. Simple manual analysis can no longer effectively handle such large volumes of data, thus advanced data science and machine learning techniques are required to implement predictive maintenance. This research aims to explore the applications of machine learning in state-of-health assessment and maintenance management for equipment, with the goal of proposing a more efficient machine learning model for equipment management and maintenance. The research first preprocesses the raw data through encoding, data scaling, data splitting, and addressing data imbalance issues. Then, the processed data is used to construct models, including decision tree (DT), random forest (RF), and recurrent neural network (RNN). Finally, comprehensively comparing and analyzing the models based on various evaluation indicators and figure out the most proper model for this type of dataset. The thesis applies the above research process to analyze a dataset with single-point-in-time data. The dataset simulates data captured by sensors from equipment under various environmental conditions, such as air temperature and process temperature. Following the mentioned research process, the result showed that the random forest model is more suitable for dataset without complete time series. Based on these research findings, implementing a random forest model can increase efficiency in management and maintenance. Besides, training the predictive model with single-point-in-time dataset can reduce the need for complete datasets, thereby enhancing its practicality and improving its application in machinery and equipment management and maintenance.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-12T16:16:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-12T16:16:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
摘要 II
Abstract III
目次 V
圖次 VII
表次 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 現有的研究成果 2
1.2.2 當前的研究困境 5
1.3 研究目的 5
1.4 論文架構 7
第二章 原理概述 8
2.1 研究流程概述 8
2.2 數據預處理 9
2.2.1 編碼(encoding) 9
2.2.2 數據集劃分 10
2.2.3 資料特徵縮放(scaling) 11
2.2.4 資料不平衡 12
2.3 模型評估指標 13
第三章 演算方法 17
3.1 決策樹 17
3.2 隨機森林[28] 18
3.3 循環神經網路 20
第四章 案例分析與討論 24
4.1 原始數據資料概述 24
4.2 數據預處理 31
4.2.1 編碼 31
4.2.2 數據集劃分 32
4.2.3 資料特徵縮放 33
4.2.4 資料不平衡 34
4.3 建構模型 35
4.3.1 決策樹 35
4.3.2 隨機森林 40
4.3.3 循環神經網路 42
4.4 模型成效之分析與比較 46
4.4.1 決策樹模型之成效 46
4.4.2 隨機森林模型之成效 49
4.4.3 循環神經網路模型之成效 52
4.4.4 綜合分析各模型之表現 56
第五章 結論與未來研究方向 58
參考文獻 60
-
dc.language.isozh_TW-
dc.title機器學習於機台設備健康狀態評估之應用zh_TW
dc.titleApplication of Machine Learning in State-of-Health Assessment of Equipmenten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃奎隆;林棋瑋zh_TW
dc.contributor.oralexamcommitteeKwei-Long Huang;Chi-Wei Linen
dc.subject.keyword機台設備,預測性維護,健康狀態,機器學習,決策樹,隨機森林,循環神經網路,zh_TW
dc.subject.keywordmachinery and equipment,predictive maintenance,state-of-health,machine learning,decision tree,random forest,recurrent neural network,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202401246-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-06-20-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved