Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92969
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李庭諭zh_TW
dc.contributor.advisorTing-Yu Leeen
dc.contributor.author王羿璁zh_TW
dc.contributor.authorYi-Tsung Wangen
dc.date.accessioned2024-07-09T16:10:48Z-
dc.date.available2024-07-10-
dc.date.copyright2024-07-09-
dc.date.issued2024-
dc.date.submitted2024-07-08-
dc.identifier.citation[1] K. J. Becher and J. V. Geel. Sums of squares in function fields of hyperelliptic curves. Math. Z., 2008.
[2] E. Becker. Hereditarily-pythagorean fields and orderings of higher level. Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1978.
[3] O. Benoist. Writing positive polynomials as sums of (few) squares. European Mathematical Society. Newsletter, 2017.
[4] J.-L. Colliot-Thélène and A. N. Skorobogatov. The Brauer-Grothendieck group, volume 71 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham, [2021] ©2021.
[5] D. A. Cox. Primes of the form x2 + ny2: Fermat, class field theory, and complex multiplication, second edition. John Wiley & Sons, Inc., Hoboken, NJ, 2013.
[6] R. Elman and A. R. Wadsworth. Hereditarily quadratically closed fields. J. Algebra, 1986.
[7] D. W. Hoffmann. pythagoras numbers of fields. Journal of the American Mathematical Society, 12(3), p.839-848, 1999.
[8] U. Jannsen and R. Sujatha. Levels of function fields of surfaces over number fields. J. Algebra, 2001.
[9] K. Kato. A Hasse principle for two dimensional global fields. J. Reine Angew. Math., 1986.
[10] T. Lam. Introduction to Quadratic Forms over Fields. American Mathematical Society, 2005.
[11] S. Lang. Diophantine geometry. Interscience Publishers, 1962.
[12] D. A. Marcus. Number Fields, second edition. Springer International Publishing AG, 2018.
[13] A. Pfister. Quadratic Forms with Applications to Algebraic Geometry and Topology. Cambridge University Press, 1995.
[14] F. Pop. On the pythagoras number of function fields of curves over number fields. Israel J. Math., 2022.
[15] Y. Pourchet. Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques. Acta Arithmetica, 1971.
[16] E. Witt. Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionenkörper. J. Reine Angew. Math, 1934.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92969-
dc.description.abstract在本篇文章的第二章中,我們收集了Witt的文章當中的一些結論,在其中證明了曲線在R 上的函數體的畢達哥拉斯數小於等於2。接著在第三章中我們考慮一般體上的函數體,計算圓錐曲線x^2+y^2+n在體K上的函數體F_{n/K}的位階,並證明了若 s(F_{n/K})≦2,則 p(F_{n/k})=2 當且僅當s(K)=1或者K有遺傳歐幾里得性質。此外,證明了當K=Q時,若n≡3,6,7(mod 8) 為無平方因子的正整數,則p(F_{n/Q})=5。在第三章的最後,我們證明了對於m=1,以下敘述成立:x^{2k}+n在Q(x)中是m+1個平方和當且僅當n在Q中是m個平方和;然而此敘述對於m=2,3不成立。第四章中收集了Pourchet的結論,之中證明了對於代數數體K,K(x)的畢達哥拉斯數小於等於5且Q(x)的畢達哥拉斯數恰為5。最後在第五章中我們證明了對於m=1,2,以下敘述成立:對於整係數多項式f(x),f在Q(x)中是m 個平方和當且僅當對於所有正整數n都有f(n)在Q中是m個平方和;然而此敘述對於m=3不成立。zh_TW
dc.description.abstractIn this paper, we collect some results of Witt’s paper in Chapter 2, which states that the pythagoras numbers of function fields of curves over R are less than 2. Next we consider the function field over general fields in Chapter 3, we compute the levels and pythagoras numbers of the function fields F_{n/K} of the conics x^2+y^2+n over a field K, and prove that if s(F_{n/K})≦2, then p(F_{n/K})=2 if and only if s(K)=1 or K is hereditarily euclidean. Moreover, for K = Q, we show that p(F_{n/Q})=5 for squarefree positive integer n with n≡3,6,7(mod 8). At the end of Chapter 3, we prove that
x^{2k}+n is the sum of m+1 squares in Q(x) if and only if n is the sum of m squares for m=1 but false for m=2,3. In Chapter 4 we collect some results of Pourchet’s paper, which states that the pythagoras number of K(x) is less than 5 for number field K and it is exactly 5 if K=Q. Finally in Chapter 5 we show that for an integer-coefficient polynomial f, f is the sum of m squares in Q(x) if and only if f(n) is the sum of m squares for all positive integers n for m = 1, 2 but false for m = 3.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-09T16:10:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-09T16:10:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 iii
摘要 v
Abstract vii
Contents ix
Chapter 1 Introduction 1
Chapter 2 Function fields of curves over the reals 5
2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Chapter 3 Function field of conics over fields 11
3.1 Good fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Preliminary of quadratic forms . . . . . . . . . . . . . . . . . . . . . 13
3.3 Function fields of conics . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Rationals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Polynomials of the form x^{2k}+n . . . . . . . . . . . . . . . . . . . . 26
Chapter 4 Rational function field in one variable over number fields 29
4.1 Notation and Preliminary . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Local case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Global case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Cyclotomic polynomials . . . . . . . . . . . . . . . . . . . . . . . . 35
Chapter 5 Polynomials in \\\\\\\\Sigma_m Q(x)^2 39
References 43
-
dc.language.isoen-
dc.title曲線的函數體的位階與畢達哥拉斯數zh_TW
dc.titleLevels and Pythagoras Numbers of Function Fields of Curvesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor林惠雯zh_TW
dc.contributor.coadvisorHui-Wen Linen
dc.contributor.oralexamcommittee余正道;蔡政江zh_TW
dc.contributor.oralexamcommitteeJeng-Daw Yu;Cheng-Chiang Tsaien
dc.subject.keyword平方和,畢達哥拉斯數,函數體,圓錐曲線,代數數體,zh_TW
dc.subject.keywordsum of squares,level,pythagoras number,function field,conic,number field,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202401550-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-08-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf417.16 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved