Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 分子科學與技術國際研究生博士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92967
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳錦地zh_TW
dc.contributor.advisorChin-Ti Chenen
dc.contributor.author圖爾西zh_TW
dc.contributor.authorTULSIRAM MOODALA BEED PRASANNAKUMARen
dc.date.accessioned2024-07-09T16:10:14Z-
dc.date.available2024-07-10-
dc.date.copyright2024-07-09-
dc.date.issued2024-
dc.date.submitted2024-07-08-
dc.identifier.citation[1] S.G. Benka, The Energy Challenge, Physics Today 55(4) (2002) 38-39. https://doi.org/10.1063/1.1480780.
[2] E. Kabir, P. Kumar, S. Kumar, A.A. Adelodun, K.-H. Kim, Solar energy: Potential and future prospects, Renewable and Sustainable Energy Reviews 82 (2018) 894-900. https://doi.org/10.1016/j.rser.2017.09.094.
[3] D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strategy Reviews 24 (2019) 38-50. https://doi.org/10.1016/j.esr.2019.01.006.
[4] A. Shahsavari, M. Akbari, Potential of solar energy in developing countries for reducing energy-related emissions, Renewable and Sustainable Energy Reviews 90 (2018) 275-291. https://doi.org/10.1016/j.rser.2018.03.065.
[5] C. Breyer, D. Bogdanov, A. Gulagi, A. Aghahosseini, L.S.N.S. Barbosa, O. Koskinen, M. Barasa, U. Caldera, S. Afanasyeva, M. Child, J. Farfan, P. Vainikka, On the role of solar photovoltaics in global energy transition scenarios, Progress in Photovoltaics: Research and Applications 25(8) (2017) 727-745. https://doi.org/10.1002/pip.2885.
[6] Z.-S. Li, G.-Q. Zhang, D.-M. Li, J. Zhou, L.-J. Li, L.-X. Li, Application and development of solar energy in building industry and its prospects in China, Energy Policy 35(8) (2007) 4121-4127. https://doi.org/10.1016/j.enpol.2007.02.006.
[7] D. Burnett, E. Barbour, G.P. Harrison, The UK solar energy resource and the impact of climate change, Renewable Energy 71 (2014) 333-343. https://doi.org/10.1016/j.renene.2014.05.034.
[8] A.A. Prasad, R.A. Taylor, M. Kay, Assessment of solar and wind resource synergy in Australia, Applied Energy 190 (2017) 354-367. https://doi.org/10.1016/j.apenergy.2016.12.135.
[9] E. Zell, S. Gasim, S. Wilcox, S. Katamoura, T. Stoffel, H. Shibli, J. Engel-Cox, M.A. Subie, Assessment of solar radiation resources in Saudi Arabia, Solar Energy 119 (2015) 422-438. https://doi.org/10.1016/j.solener.2015.06.031.
[10] F. Creutzig, P. Agoston, J.C. Goldschmidt, G. Luderer, G. Nemet, R.C. Pietzcker, The underestimated potential of solar energy to mitigate climate change, Nature Energy 2(9) (2017) 17140. https://doi.org/10.1038/nenergy.2017.140.
[11] M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency, Advanced Energy Materials 10(26) (2020) 1904102. https://doi.org/10.1002/aenm.201904102.
[12] M. Cai, Y. Wu, H. Chen, X. Yang, Y. Qiang, L. Han, Cost-Performance Analysis of Perovskite Solar Modules, Advanced Science 4(1) (2017) 1600269. https://doi.org/10.1002/advs.201600269.
[13] P.V. Kamat, Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters, The Journal of Physical Chemistry C 112(48) (2008) 18737-18753. https://doi.org/10.1021/jp806791s.
[14] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications, Chemical Reviews 109(11) (2009) 5868-5923. https://doi.org/10.1021/cr900182s.
[15] M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4(2) (2003) 145-153. https://doi.org/10.1016/S1389-5567(03)00026-1.
[16] N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Towards stable and commercially available perovskite solar cells, Nature Energy 1(11) (2016) 16152. https://doi.org/10.1038/nenergy.2016.152.
[17] S. Reber, W. Zimmermann, T. Kieliba, Zone melting recrystallization of silicon films for crystalline silicon thin-film solar cells, Solar Energy Materials and Solar Cells 65(1) (2001) 409-416. https://doi.org/10.1016/S0927-0248(00)00120-3.
[18] J. Pastuszak, P. Węgierek, Photovoltaic Cell Generations and Current Research Directions for Their Development, Materials 15(16) (2022) 5542. https://doi.org/10.3390/ma15165542.
[19] J. Zhao, Recent advances of high-efficiency single crystalline silicon solar cells in processing technologies and substrate materials, Solar Energy Materials and Solar Cells 82(1) (2004) 53-64. https://doi.org/10.1016/j.solmat.2004.01.005.
[20] P.G.V. Sampaio, M.O.A. González, Photovoltaic solar energy: Conceptual framework, Renewable and Sustainable Energy Reviews 74 (2017) 590-601. https://doi.org/10.1016/j.rser.2017.02.081.
[21] M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Solar cell efficiency tables (version 50), Progress in Photovoltaics: Research and Applications 25(7) (2017) 668-676. https://doi.org/10.1002/pip.2909.
[22] I. C. B, R.A. Marques Lameirinhas, J.P. N. Torres, C.A.F. Fernandes, Comparative study of the copper indium gallium selenide (CIGS) solar cell with other solar technologies, Sustainable Energy & Fuels 5(8) (2021) 2273-2283. https://doi.org/10.1039/D0SE01717E.
[23] M.A. Green, Crystalline and thin-film silicon solar cells: state of the art and future potential, Solar Energy 74(3) (2003) 181-192. https://doi.org/10.1016/S0038-092X(03)00187-7.
[24] N.Y. Doumon, L. Yang, F. Rosei, Ternary organic solar cells: A review of the role of the third element, Nano Energy 94 (2022) 106915. https://doi.org/10.1016/j.nanoen.2021.106915.
[25] E. Arici, H. Hoppe, F. Schäffler, D. Meissner, M.A. Malik, N.S. Sariciftci, Hybrid solar cells based on inorganic nanoclusters and conjugated polymers, Thin Solid Films 451-452 (2004) 612-618. https://doi.org/10.1016/j.tsf.2003.11.026.
[26] F. Kessler, D. Rudmann, Technological aspects of flexible CIGS solar cells and modules, Solar Energy 77(6) (2004) 685-695. https://doi.org/10.1016/j.solener.2004.04.010.
[27] S.G. Hashmi, J. Halme, Y. Ma, T. Saukkonen, P. Lund, A Single-Walled Carbon Nanotube Coated Flexible PVC Counter Electrode for Dye-Sensitized Solar Cells, Advanced Materials Interfaces 1(2) (2014) 1300055. https://doi.org/10.1002/admi.201300055.
[28] S. Anandan, Recent improvements and arising challenges in dye-sensitized solar cells, Solar Energy Materials and Solar Cells 91(9) (2007) 843-846. https://doi.org/10.1016/j.solmat.2006.11.017.
[29] Z.-W. Gao, Y. Wang, W.C.H. Choy, Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective, Advanced Energy Materials 12(20) (2022) 2104030. https://doi.org/10.1002/aenm.202104030.
[30] C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer–Fullerene Bulk-Heterojunction Solar Cells, Advanced Materials 22(34) (2010) 3839-3856. https://doi.org/10.1002/adma.200903697.
[31] J. Nelson, Polymer:fullerene bulk heterojunction solar cells, Materials Today 14(10) (2011) 462-470. https://doi.org/10.1016/S1369-7021(11)70210-3.
[32] W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348(6240) (2015) 1234-1237. https://doi.org/10.1126/science.aaa9272.
[33] Z. Li, Z. Wang, C. Jia, Z. Wan, C. Zhi, C. Li, M. Zhang, C. Zhang, Z. Li, Annealing free tin oxide electron transport layers for flexible perovskite solar cells, Nano Energy 94 (2022) 106919. https://doi.org/10.1016/j.nanoen.2022.106919.
[34] Z. Wang, X. Zhu, J. Feng, C. Wang, C. Zhang, X. Ren, S. Priya, S. Liu, D. Yang, Antisolvent- and Annealing-Free Deposition for Highly Stable Efficient Perovskite Solar Cells via Modified ZnO, Advanced Science 8(13) (2021) 2002860. https://doi.org/10.1002/advs.202002860.
[35] W. Hu, T. Liu, X. Yin, H. Liu, X. Zhao, S. Luo, Y. Guo, Z. Yao, J. Wang, N. Wang, H. Lin, Z. Guo, Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis, Journal of Materials Chemistry A 5(4) (2017) 1434-1441. https://doi.org/10.1039/C6TA09174A.
[36] C. Chen, Y. Jiang, Y. Wu, J. Guo, X. Kong, X. Wu, Y. Li, D. Zheng, S. Wu, X. Gao, Z. Hou, G. Zhou, Y. Chen, J.-M. Liu, K. Kempa, J. Gao, Low-Temperature-Processed WOx as Electron Transfer Layer for Planar Perovskite Solar Cells Exceeding 20% Efficiency, Solar RRL 4(4) (2020) 1900499. https://doi.org/10.1002/solr.201900499.
[37] B. Gu, Y. Zhu, H. Lu, W. Tian, L. Li, Efficient planar perovskite solar cells based on low-cost spin-coated ultrathin Nb2O5 films, Solar Energy 166 (2018) 187-194. https://doi.org/10.1016/j.solener.2018.03.054.
[38] M. Zhong, D. Yang, J. Zhang, J. Shi, X. Wang, C. Li, Improving the performance of CdS/P3HT hybrid inverted solar cells by interfacial modification, Solar Energy Materials and Solar Cells 96 (2012) 160-165. https://doi.org/10.1016/j.solmat.2011.09.041.
[39] W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, Halide perovskite materials for solar cells: a theoretical review, Journal of Materials Chemistry A 3(17) (2015) 8926-8942. https://doi.org/10.1039/C4TA05033A.
[40] G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, Science 342(6156) (2013) 344-347. https://doi.org/10.1126/science.1243167.
[41] W.-J. Yin, T. Shi, Y. Yan, Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance, Advanced Materials 26(27) (2014) 4653-4658. https://doi.org/10.1002/adma.201306281.
[42] Y. Wang, Y. Zhang, P. Zhang, W. Zhang, High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3, Physical Chemistry Chemical Physics 17(17) (2015) 11516-11520. https://doi.org/10.1039/C5CP00448A.
[43] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environmental Science 7(3) (2014) 982-988. https://doi.org/10.1039/C3EE43822H.
[44] J. Kim, S.-H. Lee, J.H. Lee, K.-H. Hong, The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite, The Journal of Physical Chemistry Letters 5(8) (2014) 1312-1317. https://doi.org/10.1021/jz500370k.
[45] NREL, National Renewable Energy Laboratory. https://www.nrel.gov/pv/cell-efficiency.html. (Accessed May 2024).
[46] E.K. Solak, E. Irmak, Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance, RSC Advances 13(18) (2023) 12244-12269. https://doi.org/10.1039/D3RA01454A.
[47] G. Kieslich, S. Sun, A.K. Cheetham, An extended Tolerance Factor approach for organic–inorganic perovskites, Chemical Science 6(6) (2015) 3430-3433. https://doi.org/10.1039/C5SC00961H.
[48] C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Science Advances 5(2) (2019) eaav0693. https://doi.org/10.1126/sciadv.aav0693.
[49] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society 131(17) (2009) 6050-6051. https://doi.org/10.1021/ja809598r.
[50] J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3, Advanced Materials 26(29) (2014) 4991-4998. https://doi.org/10.1002/adma.201401137.
[51] G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells, Journal of Materials Chemistry A 3(39) (2015) 19688-19695. https://doi.org/10.1039/C5TA06398A.
[52] M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science 354(6309) (2016) 206-209. https://doi.org/10.1126/science.aah5557.
[53] N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications, Energy & Environmental Science 7(9) (2014) 3061-3068. https://doi.org/10.1039/C4EE01076K.
[54] T. Leijtens, R. Prasanna, A. Gold-Parker, M.F. Toney, M.D. McGehee, Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites, ACS Energy Letters 2(9) (2017) 2159-2165. https://doi.org/10.1021/acsenergylett.7b00636.
[55] A.D. Taylor, Q. Sun, K.P. Goetz, Q. An, T. Schramm, Y. Hofstetter, M. Litterst, F. Paulus, Y. Vaynzof, A general approach to high-efficiency perovskite solar cells by any antisolvent, Nature Communications 12(1) (2021) 1878. https://doi.org/10.1038/s41467-021-22049-8.
[56] D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G.F. Trindade, J.F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R.H. Friend, Q. Gong, H.J. Snaith, R. Zhu, Enhanced photovoltage for inverted planar heterojunction perovskite solar cells, Science 360(6396) (2018) 1442-1446. https://doi.org/10.1126/science.aap9282.
[57] J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energy & Environmental Science 8(5) (2015) 1602-1608. https://doi.org/10.1039/C5EE00120J.
[58] P. Schulz, L.L. Whittaker-Brooks, B.A. MacLeod, D.C. Olson, Y.-L. Loo, A. Kahn, Electronic Level Alignment in Inverted Organometal Perovskite Solar Cells, Advanced Materials Interfaces 2(7) (2015) 1400532. https://doi.org/10.1002/admi.201400532.
[59] H.S. Jung, N.-G. Park, Perovskite Solar Cells: From Materials to Devices, Small 11(1) (2015) 10-25. https://doi.org/10.1002/smll.201402767.
[60] J. Lian, B. Lu, F. Niu, P. Zeng, X. Zhan, Electron-Transport Materials in Perovskite Solar Cells, Small Methods 2(10) (2018) 1800082. https://doi.org/10.1002/smtd.201800082.
[61] J.T.-W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells, Nano Letters 14(2) (2014) 724-730. https://doi.org/10.1021/nl403997a.
[62] D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System, The Journal of Physical Chemistry C 118(30) (2014) 16567-16573. https://doi.org/10.1021/jp412407j.
[63] D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nature Photonics 8(2) (2014) 133-138. https://doi.org/10.1038/nphoton.2013.342.
[64] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science 338(6107) (2012) 643-647. https://doi.org/10.1126/science.1228604.
[65] J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy & Environmental Science 6(6) (2013) 1739-1743. https://doi.org/10.1039/C3EE40810H.
[66] A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, T. Wu, Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells, The Journal of Physical Chemistry C 118(49) (2014) 28494-28501. https://doi.org/10.1021/jp509753p.
[67] A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability, Science 345(6194) (2014) 295-298. https://doi.org/10.1126/science.1254763.
[68] D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E.M.J. Johansson, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures, RSC Advances 3(41) (2013) 18762-18766. https://doi.org/10.1039/C3RA43228A.
[69] J.P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R. Srimath Kandada, S.M. Zakeeruddin, A. Petrozza, A. Abate, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Highly efficient planar perovskite solar cells through band alignment engineering, Energy & Environmental Science 8(10) (2015) 2928-2934. https://doi.org/10.1039/C5EE02608C.
[70] W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells, Journal of the American Chemical Society 137(21) (2015) 6730-6733. https://doi.org/10.1021/jacs.5b01994.
[71] L. Wang, W. Fu, Z. Gu, C. Fan, X. Yang, H. Li, H. Chen, Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer, Journal of Materials Chemistry C 2(43) (2014) 9087-9090. https://doi.org/10.1039/C4TC01875C.
[72] J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei, W. Lau, Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells, Journal of Materials Chemistry A 3(22) (2015) 11750-11755. https://doi.org/10.1039/C5TA01200G.
[73] Y. Zhao, K. Zhu, Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications, Chemical Society Reviews 45(3) (2016) 655-689. https://doi.org/10.1039/C4CS00458B.
[74] Z. Yu, L. Sun, Recent Progress on Hole-Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells, Advanced Energy Materials 5(12) (2015) 1500213. https://doi.org/10.1002/aenm.201500213.
[75] P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency, Nature Communications 5(1) (2014) 3834. https://doi.org/10.1038/ncomms4834.
[76] S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%, Nano Letters 15(6) (2015) 3723-3728. https://doi.org/10.1021/acs.nanolett.5b00116.
[77] J.A. Christians, R.C.M. Fung, P.V. Kamat, An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide, Journal of the American Chemical Society 136(2) (2014) 758-764. https://doi.org/10.1021/ja411014k.
[78] X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, M. Wang, Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode, Nano Letters 15(4) (2015) 2402-2408. https://doi.org/10.1021/nl504701y.
[79] J.W. Jung, C.-C. Chueh, A.K.-Y. Jen, A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells, Advanced Materials 27(47) (2015) 7874-7880. https://doi.org/10.1002/adma.201503298.
[80] M.I.H. Ansari, A. Qurashi, M.K. Nazeeruddin, Frontiers, opportunities, and challenges in perovskite solar cells: A critical review, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 35 (2018) 1-24. https://doi.org/10.1016/j.jphotochemrev.2017.11.002.
[81] S. Chen, X. Yu, X. Cai, M. Peng, K. Yan, B. Dong, H. Hu, B. Chen, X. Gao, D. Zou, PbCl2-assisted film formation for high-efficiency heterojunction perovskite solar cells, RSC Advances 6(1) (2016) 648-655. https://doi.org/10.1039/C5RA23062D.
[82] N. Yaghoobi Nia, M. Zendehdel, L. Cinà, F. Matteocci, A. Di Carlo, A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure, Journal of Materials Chemistry A 6(2) (2018) 659-671. https://doi.org/10.1039/C7TA08038G.
[83] L. Meng, J. You, Y. Yang, Addressing the stability issue of perovskite solar cells for commercial applications, Nat. Commun 9 (2018) 5265. https://doi.org/10.1038/s41467-018-07255-1.
[84] Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov, S.I. Seok, M.D. McGehee, E.H. Sargent, H. Han, Challenges for commercializing perovskite solar cells, Science 361 (2018) eaat8235. https://doi.org/10.1126/science.aat8235.
[85] T.A. Chowdhury, M.A. Bin Zafar, M. Sajjad-Ul Islam, M. Shahinuzzaman, M.A. Islam, M.U. Khandaker, Stability of perovskite solar cells: issues and prospects, RSC Adv. 13 (2023) 1787-1810. https://doi.org/10.1039/D2RA05903G.
[86] B.-A. Chen, J.-T. Lin, N.-T. Suen, C.-W. Tsao, T.-C. Chu, Y.-Y. Hsu, T.-S. Chan, Y.-T. Chan, J.-S. Yang, C.-W. Chiu, H.M. Chen, In situ identification of photo-and moisture-dependent phase evolution of perovskite solar cells, ACS Energy Lett. 2 (2017) 342-348. https://doi.org/10.1021/acsenergylett.6b00698.
[87] A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells, Chem. Mater. 27 (2015) 3397-3407. https://doi.org/10.1021/acs.chemmater.5b00660.
[88] A.J. Pearson, G.E. Eperon, P.E. Hopkinson, S.N. Habisreutinger, J.T.-W. Wang, H.J. Snaith, N.C. Greenham, Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms, Adv. Energy Mater. 6 (2016) 1600014. https://doi.org/10.1002/aenm.201600014.
[89] Z. Song, A. Abate, S.C. Watthage, G.K. Liyanage, A.B. Phillips, U. Steiner, M. Graetzel, M.J. Heben, Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2-CH3NH3I-H2O system, Adv. Energy Mater. 6 (2016) 1600846. https://doi.org/10.1002/aenm.201600846.
[90] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F.D. Angelis, H.-G. Boyen, Intrinsic thermal instability of methylammonium lead trihalide perovskite, Adv. Energy Mater. 5 (2015) 1500477. https://doi.org/10.1002/aenm.201500477.
[91] E.J. Juarez-Perez, Z. Hawash, S.R. Raga, L.K. Ono, Y. Qi, Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis, Energy Environ. Sci. 9 (2016) 3406-3410. https://doi.org/10.1039/C6EE02016J.
[92] T. Leijtens, E.T. Hoke, G. Grancini, D.J. Slotcavage, G.E. Eperon, J.M. Ball, M. De Bastiani, A.R. Bowring, N. Martino, K. Wojciechowski, M.D. McGehee, H.J. Snaith, A. Petrozza, Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films, Adv. Energy Mater. 5 (2015) 1500962. https://doi.org/10.1002/aenm.201500962.
[93] Y. Yuan, Q. Wang, Y. Shao, H. Lu, T. Li, A. Gruverman, J. Huang, Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures, Adv. Energy Mater. 6 (2016) 1501803. https://doi.org/10.1002/aenm.201501803.
[94] Y.S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, T. Park, A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite, Energy & Environmental Science 7(4) (2014) 1454-1460. https://doi.org/10.1039/C3EE44174A.
[95] J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells, Nano Letters 14(5) (2014) 2584-2590. https://doi.org/10.1021/nl500390f.
[96] F. El-Mellouhi, A. Marzouk, E.T. Bentria, S.N. Rashkeev, S. Kais, F.H. Alharbi, Hydrogen Bonding and Stability of Hybrid Organic–Inorganic Perovskites, ChemSusChem 9(18) (2016) 2648-2655. https://doi.org/10.1002/cssc.201600864.
[97] J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho, N.-G. Park, Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell, Advanced Energy Materials 5(20) (2015) 1501310. https://doi.org/10.1002/aenm.201501310.
[98] M.R. Leyden, M.V. Lee, S.R. Raga, Y. Qi, Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations, Journal of Materials Chemistry A 3(31) (2015) 16097-16103. https://doi.org/10.1039/C5TA03577E.
[99] Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H.L.W. Chan, F. Yan, Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity, Nature Communications 7(1) (2016) 11105. https://doi.org/10.1038/ncomms11105.
[100] J. Rodríguez-Romero, B. Clasen Hames, P. Galar, A. Fakharuddin, I. Suarez, L. Schmidt-Mende, J.P. Martínez-Pastor, A. Douhal, I. Mora-Seró, E.M. Barea, Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation, Physical Chemistry Chemical Physics 20(48) (2018) 30189-30199. https://doi.org/10.1039/C8CP06418K.
[101] L.N. Quan, M. Yuan, R. Comin, O. Voznyy, E.M. Beauregard, S. Hoogland, A. Buin, A.R. Kirmani, K. Zhao, A. Amassian, D.H. Kim, E.H. Sargent, Ligand-Stabilized Reduced-Dimensionality Perovskites, Journal of the American Chemical Society 138(8) (2016) 2649-2655. https://doi.org/10.1021/jacs.5b11740.
[102] D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science 351(6269) (2016) 151-155. https://doi.org/10.1126/science.aad5845.
[103] D.S. Lee, J.S. Yun, J. Kim, A.M. Soufiani, S. Chen, Y. Cho, X. Deng, J. Seidel, S. Lim, S. Huang, A.W.Y. Ho-Baillie, Passivation of Grain Boundaries by Phenethylammonium in Formamidinium-Methylammonium Lead Halide Perovskite Solar Cells, ACS Energy Letters 3(3) (2018) 647-654. https://doi.org/10.1021/acsenergylett.8b00121.
[104] B.A.d. Carvalho, S. Kavadiya, S. Huang, D.M. Niedzwiedzki, P. Biswas, Highly Stable Perovskite Solar Cells Fabricated Under Humid Ambient Conditions, IEEE Journal of Photovoltaics 7(2) (2017) 532-538. https://doi.org/10.1109/JPHOTOV.2016.2642639.
[105] Q. Guo, F. Yuan, B. Zhang, S. Zhou, J. Zhang, Y. Bai, L. Fan, T. Hayat, A. Alsaedi, Z.a. Tan, Passivation of the grain boundaries of CH3NH3PbI3 using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability, Nanoscale 11(1) (2019) 115-124. https://doi.org/10.1039/C8NR08295B.
[106] Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, J. Huang, Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene, Nature Communications 7(1) (2016) 12806. https://doi.org/10.1038/ncomms12806.
[107] S.G. Motti, D. Meggiolaro, A.J. Barker, E. Mosconi, C.A.R. Perini, J.M. Ball, M. Gandini, M. Kim, F. De Angelis, A. Petrozza, Controlling competing photochemical reactions stabilizes perovskite solar cells, Nature Photonics 13(8) (2019) 532-539. https://doi.org/10.1038/s41566-019-0435-1.
[108] B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells, Nature Communications 9(1) (2018) 1076. https://doi.org/10.1038/s41467-018-03169-0.
[109] D. Koushik, W.J.H. Verhees, Y. Kuang, S. Veenstra, D. Zhang, M.A. Verheijen, M. Creatore, R.E.I. Schropp, High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture, Energy & Environmental Science 10(1) (2017) 91-100. https://doi.org/10.1039/C6EE02687G.
[110] D.-W. Kuo, Y.-S. Liu, A.D. Fenta, S.-W. Li, T. Moodalabeed Prasannakumar, C.-T. Chen, C.-T. Chen, Inverted MAPbI3 Perovskite Solar Cells Based on Optimized NiOx Hole-Transporting Material and an Interlayer of Photovoltaic Polymers Exhibit a Power Conversion Efficiency over 21% with an Extended Stability, ACS Applied Electronic Materials 5(12) (2023) 6897-6907. https://doi.org/10.1021/acsaelm.3c01318.
[111] S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells, Nano Letters 14(10) (2014) 5561-5568. https://doi.org/10.1021/nl501982b.
[112] Y.C. Kim, T.Y. Yang, N.J. Jeon, J. Im, S. Jang, T.J. Shin, H.W. Shin, S. Kim, E. Lee, S. Kim, J.H. Noh, S.I. Seok, J. Seo, Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells, Energy & Environmental Science 10(10) (2017) 2109-2116. https://doi.org/10.1039/C7EE01931A.
[113] E. Ramasamy, V. Karthikeyan, K. Rameshkumar, G. Veerappan, Glass-to-glass encapsulation with ultraviolet light curable epoxy edge sealing for stable perovskite solar cells, Materials Letters 250 (2019) 51-54. https://doi.org/10.1016/j.matlet.2019.04.082.
[114] Y. Kawamura, H. Mashiyama, K. Hasebe, Structural Study on Cubic–Tetragonal Transition of CH3NH3PbI3, Journal of the Physical Society of Japan 71(7) (2002) 1694-1697. https://doi.org/10.1143/JPSJ.71.1694.
[115] M.T. Weller, O.J. Weber, P.F. Henry, A.M. Di Pumpo, T.C. Hansen, Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K, Chemical Communications 51(20) (2015) 4180-4183. https://doi.org/10.1039/C4CC09944C.
[116] M.T. Weller, O.J. Weber, J.M. Frost, A. Walsh, Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K, The Journal of Physical Chemistry Letters 6(16) (2015) 3209-3212. https://doi.org/10.1021/acs.jpclett.5b01432.
[117] C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry 52(15) (2013) 9019-9038. https://doi.org/10.1021/ic401215x.
[118] I. Lignos, V. Morad, Y. Shynkarenko, C. Bernasconi, R.M. Maceiczyk, L. Protesescu, F. Bertolotti, S. Kumar, S.T. Ochsenbein, N. Masciocchi, A. Guagliardi, C.-J. Shih, M.I. Bodnarchuk, A.J. deMello, M.V. Kovalenko, Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform, ACS Nano 12(6) (2018) 5504-5517. https://doi.org/10.1021/acsnano.8b01122.
[119] G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells, Journal of Materials Chemistry A 3(17) (2015) 8970-8980. https://doi.org/10.1039/C4TA04994B.
[120] B. Philippe, B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi, E.M.J. Johansson, H. Rensmo, Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation, Chemistry of Materials 27(5) (2015) 1720-1731. https://doi.org/10.1021/acs.chemmater.5b00348.
[121] A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells, Advanced Functional Materials 24(21) (2014) 3250-3258. https://doi.org/10.1002/adfm.201304022.
[122] A. Dualeh, P. Gao, S.I. Seok, M.K. Nazeeruddin, M. Grätzel, Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters, Chemistry of Materials 26(21) (2014) 6160-6164. https://doi.org/10.1021/cm502468k.
[123] M. Sawicka, P. Storoniak, P. Skurski, J. Błażejowski, J. Rak, TG-FTIR, DSC and quantum chemical studies of the thermal decomposition of quaternary methylammonium halides, Chemical Physics 324(2) (2006) 425-437. https://doi.org/10.1016/j.chemphys.2005.11.023.
[124] A.E. Williams, P.J. Holliman, M.J. Carnie, M.L. Davies, D.A. Worsley, T.M. Watson, Perovskite processing for photovoltaics: a spectro-thermal evaluation, Journal of Materials Chemistry A 2(45) (2014) 19338-19346. https://doi.org/10.1039/C4TA04725G.
[125] E.J. Juarez-Perez, Z. Hawash, S.R. Raga, L.K. Ono, Y. Qi, Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis, Energy & Environmental Science 9(11) (2016) 3406-3410. https://doi.org/10.1039/C6EE02016J.
[126] Z. Fan, H. Xiao, Y. Wang, Z. Zhao, Z. Lin, H.-C. Cheng, S.-J. Lee, G. Wang, Z. Feng, W.A. Goddard, Y. Huang, X. Duan, Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates, Joule 1(3) (2017) 548-562. https://doi.org/10.1016/j.joule.2017.08.005.
[127] I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability, Angewandte Chemie International Edition 53(42) (2014) 11232-11235. https://doi.org/10.1002/anie.201406466.
[128] D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications, Journal of the American Chemical Society 137(24) (2015) 7843-7850. https://doi.org/10.1021/jacs.5b03796.
[129] A. Buin, R. Comin, J. Xu, A.H. Ip, E.H. Sargent, Halide-Dependent Electronic Structure of Organolead Perovskite Materials, Chemistry of Materials 27(12) (2015) 4405-4412. https://doi.org/10.1021/acs.chemmater.5b01909.
[130] A.S. Thind, X. Huang, J. Sun, R. Mishra, First-Principles Prediction of a Stable Hexagonal Phase of CH3NH3PbI3, Chemistry of Materials 29(14) (2017) 6003-6011. https://doi.org/10.1021/acs.chemmater.7b01781.
[131] D.W. Ferdani, S.R. Pering, D. Ghosh, P. Kubiak, A.B. Walker, S.E. Lewis, A.L. Johnson, P.J. Baker, M.S. Islam, P.J. Cameron, Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells, Energy & Environmental Science 12(7) (2019) 2264-2272. https://doi.org/10.1039/C9EE00476A.
[132] J. Yang, B.D. Siempelkamp, E. Mosconi, F. De Angelis, T.L. Kelly, Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO, Chemistry of Materials 27(12) (2015) 4229-4236. https://doi.org/10.1021/acs.chemmater.5b01598.
[133] G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo, C. Ducati, In situ observation of heat-induced degradation of perovskite solar cells, Nature Energy 1(2) (2016) 15012. https://doi.org/10.1038/nenergy.2015.12.
[134] M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Stability of Polymer Solar Cells, Advanced Materials 24(5) (2012) 580-612. https://doi.org/10.1002/adma.201104187.
[135] A.K. Jena, M. Ikegami, T. Miyasaka, Severe Morphological Deformation of Spiro-OMeTAD in (CH3NH3)PbI3 Solar Cells at High Temperature, ACS Energy Letters 2(8) (2017) 1760-1761. https://doi.org/10.1021/acsenergylett.7b00582.
[136] N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, J. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells, Nature Energy 3(8) (2018) 682-689. https://doi.org/10.1038/s41560-018-0200-6.
[137] X. Li, H. Yang, A. Liu, C. Lu, H. Yuan, W. Zhang, J. Fang, Iodine-trapping strategy for light-heat stable inverted perovskite solar cells under ISOS protocols, Energy & Environmental Science 16(12) (2023) 6071-6077. https://doi.org/10.1039/D3EE03405D.
[138] S. Wang, H. Chen, J. Zhang, G. Xu, W. Chen, R. Xue, M. Zhang, Y. Li, Y. Li, Targeted Therapy for Interfacial Engineering Toward Stable and Efficient Perovskite Solar Cells, Advanced Materials 31(41) (2019) 1903691. https://doi.org/10.1002/adma.201903691.
[139] F. Cai, J. Cai, L. Yang, W. Li, R.S. Gurney, H. Yi, A. Iraqi, D. Liu, T. Wang, Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells, Nano Energy 45 (2018) 28-36. https://doi.org/10.1016/j.nanoen.2017.12.028.
[140] Z. Huang, X. Hu, C. Liu, X. Meng, Z. Huang, J. Yang, X. Duan, J. Long, Z. Zhao, L. Tan, Y. Song, Y. Chen, Water-Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer, Advanced Functional Materials 29(37) (2019) 1902629. https://doi.org/10.1002/adfm.201902629.
[141] G.-W. Kim, G. Kang, M. Malekshahi Byranvand, G.-Y. Lee, T. Park, Gradated Mixed Hole Transport Layer in a Perovskite Solar Cell: Improving Moisture Stability and Efficiency, ACS Applied Materials & Interfaces 9(33) (2017) 27720-27726. https://doi.org/10.1021/acsami.7b07071.
[142] K. An, J. Kim, B. Yoon, H. Lee, Liq interlayer as electron extraction layer for highly efficient and stable perovskite solar cells, International Journal of Energy Research 46(5) (2022) 5745-5755. https://doi.org/10.1002/er.7519.
[143] X. Li, S. Fu, S. Liu, Y. Wu, W. Zhang, W. Song, J. Fang, Suppressing the ions-induced degradation for operationally stable perovskite solar cells, Nano Energy 64 (2019) 103962. https://doi.org/10.1016/j.nanoen.2019.103962.
[144] W.-A. Quitsch, D.W. deQuilettes, O. Pfingsten, A. Schmitz, S. Ognjanovic, S. Jariwala, S. Koch, M. Winterer, D.S. Ginger, G. Bacher, The Role of Excitation Energy in Photobrightening and Photodegradation of Halide Perovskite Thin Films, The Journal of Physical Chemistry Letters 9(8) (2018) 2062-2069. https://doi.org/10.1021/acs.jpclett.8b00212.
[145] Y. Li, X. Xu, C. Wang, B. Ecker, J. Yang, J. Huang, Y. Gao, Light-Induced Degradation of CH3NH3PbI3 Hybrid Perovskite Thin Film, The Journal of Physical Chemistry C 121(7) (2017) 3904-3910. https://doi.org/10.1021/acs.jpcc.6b11853.
[146] V.V. Travkin, P.A. Yunin, A.N. Fedoseev, A.I. Okhapkin, Y.I. Sachkov, G.L. Pakhomov, Wavelength-selective degradation of perovskite-based solar cells, Solid State Sciences 99 (2020) 106051. https://doi.org/10.1016/j.solidstatesciences.2019.106051.
[147] A. Farooq, M.R. Khan, T. Abzieher, A. Voigt, D.C. Lupascu, U. Lemmer, B.S. Richards, U.W. Paetzold, Photodegradation of Triple-Cation Perovskite Solar Cells: The Role of Spectrum and Bias Conditions, ACS Applied Energy Materials 4(4) (2021) 3083-3092. https://doi.org/10.1021/acsaem.0c02813.
[148] N.H. Nickel, F. Lang, V.V. Brus, O. Shargaieva, J. Rappich, Unraveling the Light-Induced Degradation Mechanisms of CH3NH3PbI3 Perovskite Films, Advanced Electronic Materials 3(12) (2017) 1700158. https://doi.org/10.1002/aelm.201700158.
[149] G. Abdelmageed, L. Jewell, K. Hellier, L. Seymour, B. Luo, F. Bridges, J.Z. Zhang, S. Carter, Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells, Applied Physics Letters 109(23) (2016). https://doi.org/10.1063/1.4967840.
[150] Y. Wei, P. Audebert, L. Galmiche, J.-S. Lauret, E. Deleporte, Photostability of 2D organic-inorganic hybrid perovskites, Mater. 7 (2014) 4789-4802. https://doi.org/10.3390/ma7064789.
[151] T. Moodalabeed Prasannakumar, S. Hampapura Chaluvegowda, D.-W. Kuo, S.-W. Li, W.-Y. Yu, J.-J. Shyue, C.-T. Chen, C.-T. Chen, Mitigating the Degradation of MAPbI3 Perovskite Solar Cells Under Continuous Light Soaking with ZnO@CdS:Epoxy Short-Wavelength Sunlight-Shielded Films, Solar RRL 8(12) (2024) 2400226. https://doi.org/10.1002/solr.202400226.
[152] Y. Tian, M. Peter, E. Unger, M. Abdellah, K. Zheng, T. Pullerits, A. Yartsev, V. Sundström, I.G. Scheblykin, Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold, Physical Chemistry Chemical Physics 17(38) (2015) 24978-24987. https://doi.org/10.1039/C5CP04410C.
[153] D.W. deQuilettes, W. Zhang, V.M. Burlakov, D.J. Graham, T. Leijtens, A. Osherov, V. Bulović, H.J. Snaith, D.S. Ginger, S.D. Stranks, Photo-induced halide redistribution in organic–inorganic perovskite films, Nature Communications 7(1) (2016) 11683. https://doi.org/10.1038/ncomms11683.
[154] S.D. Stranks, V.M. Burlakov, T. Leijtens, J.M. Ball, A. Goriely, H.J. Snaith, Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States, Physical Review Applied 2(3) (2014) 034007. https://doi.org/10.1103/PhysRevApplied.2.034007.
[155] E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa, M.D. McGehee, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chemical Science 6(1) (2015) 613-617. https://doi.org/10.1039/C4SC03141E.
[156] S.G. Motti, M. Gandini, A.J. Barker, J.M. Ball, A.R. Srimath Kandada, A. Petrozza, Photoinduced Emissive Trap States in Lead Halide Perovskite Semiconductors, ACS Energy Letters 1(4) (2016) 726-730. https://doi.org/10.1021/acsenergylett.6b00355.
[157] E. Mosconi, D. Meggiolaro, H.J. Snaith, S.D. Stranks, F. De Angelis, Light-induced annihilation of Frenkel defects in organo-lead halide perovskites, Energy & Environmental Science 9(10) (2016) 3180-3187. https://doi.org/10.1039/C6EE01504B.
[158] N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S.A. Haque, The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers, Angewandte Chemie International Edition 54(28) (2015) 8208-8212. https://doi.org/10.1002/anie.201503153.
[159] A.D. Sheikh, A. Bera, M.A. Haque, R.B. Rakhi, S.D. Gobbo, H.N. Alshareef, T. Wu, Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells, Solar Energy Materials and Solar Cells 137 (2015) 6-14. https://doi.org/10.1016/j.solmat.2015.01.023.
[160] R. Brenes, C. Eames, V. Bulović, M.S. Islam, S.D. Stranks, The Impact of Atmosphere on the Local Luminescence Properties of Metal Halide Perovskite Grains, Advanced Materials 30(15) (2018) 1706208. https://doi.org/10.1002/adma.201706208.
[161] C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics, Chemical Reviews 119(5) (2019) 3418-3451. https://doi.org/10.1021/acs.chemrev.8b00336.
[162] Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga, Y. Qi, Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes, Advanced Materials Interfaces 2(13) (2015) 1500195. https://doi.org/10.1002/admi.201500195.
[163] J. Li, Q. Dong, N. Li, L. Wang, Direct Evidence of Ion Diffusion for the Silver-Electrode-Induced Thermal Degradation of Inverted Perovskite Solar Cells, Advanced Energy Materials 7(14) (2017) 1602922. https://doi.org/10.1002/aenm.201602922.
[164] C.C. Boyd, R. Cheacharoen, K.A. Bush, R. Prasanna, T. Leijtens, M.D. McGehee, Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells, ACS Energy Letters 3(7) (2018) 1772-1778. https://doi.org/10.1021/acsenergylett.8b00926.
[165] K. Domanski, J.-P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Grätzel, Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells, ACS Nano 10(6) (2016) 6306-6314. https://doi.org/10.1021/acsnano.6b02613.
[166] K.O. Brinkmann, J. Zhao, N. Pourdavoud, T. Becker, T. Hu, S. Olthof, K. Meerholz, L. Hoffmann, T. Gahlmann, R. Heiderhoff, M.F. Oszajca, N.A. Luechinger, D. Rogalla, Y. Chen, B. Cheng, T. Riedl, Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells, Nature Communications 8(1) (2017) 13938. https://doi.org/10.1038/ncomms13938.
[167] T. Hu, T. Becker, N. Pourdavoud, J. Zhao, K.O. Brinkmann, R. Heiderhoff, T. Gahlmann, Z. Huang, S. Olthof, K. Meerholz, D. Többens, B. Cheng, Y. Chen, T. Riedl, Indium-Free Perovskite Solar Cells Enabled by Impermeable Tin-Oxide Electron Extraction Layers, Advanced Materials 29(27) (2017) 1606656. https://doi.org/10.1002/adma.201606656.
[168] C.-Y. Chang, C.-Y. Chu, Y.-C. Huang, C.-W. Huang, S.-Y. Chang, C.-A. Chen, C.-Y. Chao, W.-F. Su, Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell, ACS Applied Materials & Interfaces 7(8) (2015) 4955-4961. https://doi.org/10.1021/acsami.5b00052.
[169] Y. Zong, Y. Zhou, Y. Zhang, Z. Li, L. Zhang, M.-G. Ju, M. Chen, S. Pang, X.C. Zeng, N.P. Padture, Continuous Grain-Boundary Functionalization for High-Efficiency Perovskite Solar Cells with Exceptional Stability, Chem 4(6) (2018) 1404-1415. https://doi.org/10.1016/j.chempr.2018.03.005.
[170] Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle, U. Bach, L. Spiccia, Y.-B. Cheng, Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity, Journal of Materials Chemistry A 3(15) (2015) 8139-8147. https://doi.org/10.1039/C5TA00358J.
[171] T. Jiang, W. Fu, Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers, RSC Advances 8(11) (2018) 5897-5901. https://doi.org/10.1039/C8RA00248G.
[172] N. Tripathi, Y. Shirai, M. Yanagida, A. Karen, K. Miyano, Novel Surface Passivation Technique for Low-Temperature Solution-Processed Perovskite PV Cells, ACS Applied Materials & Interfaces 8(7) (2016) 4644-4650. https://doi.org/10.1021/acsami.5b11286.
[173] J. He, C.-F. Ng, K. Young Wong, W. Liu, T. Chen, Photostability and Moisture Stability of CH3NH3PbI3-based Solar Cells by Ethyl Cellulose, ChemPlusChem 81(12) (2016) 1292-1298. https://doi.org/10.1002/cplu.201600415.
[174] Z. Lin, J. Chang, H. Zhu, Q.-H. Xu, C. Zhang, J. Ouyang, Y. Hao, Enhanced planar heterojunction perovskite solar cell performance and stability using PDDA polyelectrolyte capping agent, Solar Energy Materials and Solar Cells 172 (2017) 133-139. https://doi.org/10.1016/j.solmat.2017.07.022.
[175] L. Zuo, H. Guo, D.W. deQuilettes, S. Jariwala, N. De Marco, S. Dong, R. DeBlock, D.S. Ginger, B. Dunn, M. Wang, Y. Yang, Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells, Science Advances 3(8) (2017) e1700106. https://doi.org/10.1126/sciadv.1700106.
[176] S. Valero, T. Soria, N. Marinova, J.L. Delgado, Efficient and stable perovskite solar cells based on perfluorinated polymers, Polymer Chemistry 10(42) (2019) 5726-5736. https://doi.org/10.1039/C9PY00992B.
[177] J. Wei, F. Huang, S. Wang, L. Zhou, P. Jin, Y. Xin, Z. Cai, Z. Yin, Q. Pang, J. Zhang, Highly Stable Hybrid Perovskite Solar Cells Modified with Polyethylenimine via Ionic Bonding, ChemNanoMat 4 (2018) 649-655. https://doi.org/10.1002/cnma.201800064.
[178] D. Wang, L. Zhang, K. Deng, W. Zhang, J. Song, J. Wu, Z. Lan, Influence of Polymer Additives on the Efficiency and Stability of Ambient-Air Solution-Processed Planar Perovskite Solar Cells, Energy Technology 6(12) (2018) 2380-2386. https://doi.org/10.1002/ente.201800378.
[179] M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film, Energy & Environmental Science 11(9) (2018) 2609-2619. https://doi.org/10.1039/C8EE01101J.
[180] J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z.-G. Zhang, Y. Li, S. Liu, Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability, Advanced Energy Materials 8(3) (2018) 1701757. https://doi.org/10.1002/aenm.201701757.
[181] T.-H. Han, J.-W. Lee, C. Choi, S. Tan, C. Lee, Y. Zhao, Z. Dai, N. De Marco, S.-J. Lee, S.-H. Bae, Y. Yuan, H.M. Lee, Y. Huang, Y. Yang, Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells, Nature Communications 10(1) (2019) 520. https://doi.org/10.1038/s41467-019-08455-z.
[182] H. Nikbakht, A.E. Shalan, M. Salado, A. Assadi, P. Boroojerdian, S. Kazim, S. Ahmad, Polymer Amplification to Improve Performance and Stability toward Semitransparent Perovskite Solar Cells Fabrication, Energy Technology 8(4) (2020) 1900728. https://doi.org/10.1002/ente.201900728.
[183] Y. Lan, Y. Wang, Y. Song, Efficient flexible perovskite solar cells based on a polymer additive, Flexible and Printed Electronics 5(1) (2020) 014001. https://doi.org/10.1088/2058-8585/ab5ce3.
[184] T. Guo, Z. Fang, Z. Zhang, Z. Deng, R. Zhao, J. Zhang, M. Shang, X. Liu, Z. Hu, Y. Zhu, L. Han, Self-assembled interlayer aiming at the stability of NiOx based perovskite solar cells, Journal of Energy Chemistry 69 (2022) 211-220. https://doi.org/10.1016/j.jechem.2022.01.049.
[185] F. De Angelis, Celebrating 10 Years of Perovskite Photovoltaics, ACS Energy Letters 4(4) (2019) 853-854. https://doi.org/10.1021/acsenergylett.9b00500.
[186] A.K. Jena, A. Kulkarni, T. Miyasaka, Halide Perovskite Photovoltaics: Background, Status, and Future Prospects, Chemical Reviews 119(5) (2019) 3036-3103. https://doi.org/10.1021/acs.chemrev.8b00539.
[187] J.J. Yoo, S.S. Shin, J. Seo, Toward Efficient Perovskite Solar Cells: Progress, Strategies, and Perspectives, ACS Energy Letters 7(6) (2022) 2084-2091. https://doi.org/10.1021/acsenergylett.2c00592.
[188] Y. Liu, Y. Dong, T. Zhu, D. Ma, A. Proppe, B. Chen, C. Zheng, Y. Hou, S. Lee, B. Sun, E.H. Jung, F. Yuan, Y.-k. Wang, L.K. Sagar, S. Hoogland, F.P. García de Arquer, M.-J. Choi, K. Singh, S.O. Kelley, O. Voznyy, Z.-H. Lu, E.H. Sargent, Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix, Journal of the American Chemical Society 143(38) (2021) 15606-15615. https://doi.org/10.1021/jacs.1c02148.
[189] W.J. Mir, A. Alamoudi, J. Yin, K.E. Yorov, P. Maity, R. Naphade, B. Shao, J. Wang, M.N. Lintangpradipto, S. Nematulloev, A.-H. Emwas, A. Genovese, O.F. Mohammed, O.M. Bakr, Lecithin Capping Ligands Enable Ultrastable Perovskite-Phase CsPbI3 Quantum Dots for Rec. 2020 Bright-Red Light-Emitting Diodes, Journal of the American Chemical Society 144(29) (2022) 13302-13310. https://doi.org/10.1021/jacs.2c04637.
[190] J. Chen, H. Xiang, J. Wang, R. Wang, Y. Li, Q. Shan, X. Xu, Y. Dong, C. Wei, H. Zeng, Perovskite White Light Emitting Diodes: Progress, Challenges, and Opportunities, ACS Nano 15(11) (2021) 17150-17174. https://doi.org/10.1021/acsnano.1c06849.
[191] H. Zhao, H. Chen, S. Bai, C. Kuang, X. Luo, P. Teng, C. Yin, P. Zeng, L. Hou, Y. Yang, L. Duan, F. Gao, M. Liu, High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr3 Nanocrystals with Rationally Designed Aromatic Ligands, ACS Energy Letters 6(7) (2021) 2395-2403. https://doi.org/10.1021/acsenergylett.1c00812.
[192] S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas, R. Verbeek, S. Shanmugam, H. Akkerman, E. Meulenkamp, J.E. Huerdler, M. Acharya, M. García-Batlle, O. Almora, A. Guerrero, G. Garcia-Belmonte, W. Heiss, O. Schmidt, S.F. Tedde, High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites, Nature Electronics 4(9) (2021) 681-688. https://doi.org/10.1038/s41928-021-00644-3.
[193] K. Sakhatskyi, B. Turedi, G.J. Matt, E. Wu, A. Sakhatska, V. Bartosh, M.N. Lintangpradipto, R. Naphade, I. Shorubalko, O.F. Mohammed, S. Yakunin, O.M. Bakr, M.V. Kovalenko, Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity, Nature Photonics 17(6) (2023) 510-517. https://doi.org/10.1038/s41566-023-01207-y.
[194] Y. Zhou, J. Chen, O.M. Bakr, O.F. Mohammed, Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors, ACS Energy Letters 6(2) (2021) 739-768. https://doi.org/10.1021/acsenergylett.0c02430.
[195] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nature Materials 13(9) (2014) 897-903. https://doi.org/10.1038/nmat4014.
[196] S. Paek, P. Schouwink, E.N. Athanasopoulou, K.T. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M.K. Nazeeruddin, P. Gao, From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells, Chemistry of Materials 29(8) (2017) 3490-3498. https://doi.org/10.1021/acs.chemmater.6b05353.
[197] N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature 517(7535) (2015) 476-480. https://doi.org/10.1038/nature14133.
[198] H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, S. Il Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes, Nature 598(7881) (2021) 444-450. https://doi.org/10.1038/s41586-021-03964-8.
[199] H. Zhu, Y. Liu, F.T. Eickemeyer, L. Pan, D. Ren, M.A. Ruiz-Preciado, B. Carlsen, B. Yang, X. Dong, Z. Wang, H. Liu, S. Wang, S.M. Zakeeruddin, A. Hagfeldt, M.I. Dar, X. Li, M. Grätzel, Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency, Advanced Materials 32(12) (2020) 1907757. https://doi.org/10.1002/adma.201907757.
[200] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy & Environmental Science 9(6) (2016) 1989-1997. https://doi.org/10.1039/C5EE03874J.
[201] J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh, H.J. Mun, M.G. Kim, T.J. Shin, S.I. Seok, Controlled growth of perovskite layers with volatile alkylammonium chlorides, Nature 616(7958) (2023) 724-730. https://doi.org/10.1038/s41586-023-05825-y.
[202] M.N. Lintangpradipto, N. Tsevtkov, B.C. Moon, J.K. Kang, Size-controlled CdSe quantum dots to boost light harvesting capability and stability of perovskite photovoltaic cells, Nanoscale 9(28) (2017) 10075-10083. https://doi.org/10.1039/C7NR03487C.
[203] Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells, Nature Photonics 13(7) (2019) 460-466. https://doi.org/10.1038/s41566-019-0398-2.
[204] Y. Bai, Y. Lin, L. Ren, X. Shi, E. Strounina, Y. Deng, Q. Wang, Y. Fang, X. Zheng, Y. Lin, Z.-G. Chen, Y. Du, L. Wang, J. Huang, Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics, ACS Energy Letters 4(6) (2019) 1231-1240. https://doi.org/10.1021/acsenergylett.9b00608.
[205] Y. Zhou, J. Chen, O.M. Bakr, H.-T. Sun, Metal-Doped Lead Halide Perovskites: Synthesis, Properties, and Optoelectronic Applications, Chemistry of Materials 30(19) (2018) 6589-6613. https://doi.org/10.1021/acs.chemmater.8b02989.
[206] E. Aydin, M. De Bastiani, S. De Wolf, Defect and Contact Passivation for Perovskite Solar Cells, Advanced Materials 31(25) (2019) 1900428. https://doi.org/10.1002/adma.201900428.
[207] W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Applied Physics Letters 104(6) (2014). https://doi.org/10.1063/1.4864778.
[208] M.L. Agiorgousis, Y.-Y. Sun, H. Zeng, S. Zhang, Strong Covalency-Induced Recombination Centers in Perovskite Solar Cell Material CH3NH3PbI3, Journal of the American Chemical Society 136(41) (2014) 14570-14575. https://doi.org/10.1021/ja5079305.
[209] Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong, J. Huang, Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films, Energy & Environmental Science 10(2) (2017) 516-522. https://doi.org/10.1039/C6EE02941H.
[210] Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, J. Huang, Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films, Energy & Environmental Science 9(5) (2016) 1752-1759. https://doi.org/10.1039/C6EE00413J.
[211] N. Ahn, K. Kwak, M.S. Jang, H. Yoon, B.Y. Lee, J.-K. Lee, P.V. Pikhitsa, J. Byun, M. Choi, Trapped charge-driven degradation of perovskite solar cells, Nature Communications 7(1) (2016) 13422. https://doi.org/10.1038/ncomms13422.
[212] Y. Yuan, J. Huang, Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability, Accounts of Chemical Research 49(2) (2016) 286-293. https://doi.org/10.1021/acs.accounts.5b00420.
[213] D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo, M. Grätzel, A. Hagfeldt, M.K. Nazeeruddin, High-Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphile-Modified CH3NH3PbI3, Advanced Materials 28(15) (2016) 2910-2915. https://doi.org/10.1002/adma.201505255.
[214] D. Pérez-del-Rey, D. Forgács, E.M. Hutter, T.J. Savenije, D. Nordlund, P. Schulz, J.J. Berry, M. Sessolo, H.J. Bolink, Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fill-Factor Solar Cells, Advanced Materials 28(44) (2016) 9839-9845. https://doi.org/10.1002/adma.201603016.
[215] H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Efficient and stable solution-processed planar perovskite solar cells via contact passivation, Science 355(6326) (2017) 722-726. https://doi.org/10.1126/science.aai9081.
[216] D.-Y. Son, J.-W. Lee, Y.J. Choi, I.-H. Jang, S. Lee, P.J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, N.-G. Park, Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells, Nature Energy 1(7) (2016) 16081. https://doi.org/10.1038/nenergy.2016.81.
[217] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science 345(6196) (2014) 542-546. https://doi.org/10.1126/science.1254050.
[218] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science 347(6221) (2015) 519-522. https://doi.org/10.1126/science.aaa2725.
[219] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals, Science 347(6225) (2015) 967-970. https://doi.org/10.1126/science.aaa5760.
[220] Y. Huang, L. Li, Z. Liu, H. Jiao, Y. He, X. Wang, R. Zhu, D. Wang, J. Sun, Q. Chen, H. Zhou, The intrinsic properties of FA(1−x)MAxPbI3 perovskite single crystals, Journal of Materials Chemistry A 5(18) (2017) 8537-8544. https://doi.org/10.1039/C7TA01441D.
[221] Y. Bi, E.M. Hutter, Y. Fang, Q. Dong, J. Huang, T.J. Savenije, Charge Carrier Lifetimes Exceeding 15 μs in Methylammonium Lead Iodide Single Crystals, The Journal of Physical Chemistry Letters 7(5) (2016) 923-928. https://doi.org/10.1021/acs.jpclett.6b00269.
[222] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science 342(6156) (2013) 341-344. https://doi.org/10.1126/science.1243982.
[223] Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, X. Tao, Formation of Hybrid Perovskite Tin Iodide Single Crystals by Top-Seeded Solution Growth, Angewandte Chemie International Edition 55(10) (2016) 3447-3450. https://doi.org/10.1002/anie.201511792.
[224] Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, S. Liu, Two-Inch-Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization, Advanced Materials 27(35) (2015) 5176-5183. https://doi.org/10.1002/adma.201502597.
[225] K. Wang, D. Yang, C. Wu, J. Shapter, S. Priya, Mono-crystalline Perovskite Photovoltaics toward Ultrahigh Efficiency?, Joule 3(2) (2019) 311-316. https://doi.org/10.1016/j.joule.2018.11.009.
[226] Y. Liu, Z. Yang, S. Liu, Recent Progress in Single-Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications, Advanced Science 5(1) (2018) 1700471. https://doi.org/10.1002/advs.201700471.
[227] X.-D. Wang, W.-G. Li, J.-F. Liao, D.-B. Kuang, Recent Advances in Halide Perovskite Single-Crystal Thin Films: Fabrication Methods and Optoelectronic Applications, Solar RRL 3(4) (2019) 1800294. https://doi.org/10.1002/solr.201800294.
[228] J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fang, J. Huang, Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals, Physical Chemistry Chemical Physics 18(44) (2016) 30484-30490. https://doi.org/10.1039/C6CP06496E.
[229] B. Yang, O. Dyck, J. Poplawsky, J. Keum, A. Puretzky, S. Das, I. Ivanov, C. Rouleau, G. Duscher, D. Geohegan, K. Xiao, Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions, Journal of the American Chemical Society 137(29) (2015) 9210-9213. https://doi.org/10.1021/jacs.5b03144.
[230] Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J.M. Luther, M.C. Beard, Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal, Nature Communications 6(1) (2015) 7961. https://doi.org/10.1038/ncomms8961.
[231] W. Peng, L. Wang, B. Murali, K.-T. Ho, A. Bera, N. Cho, C.-F. Kang, V.M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J.-H. He, O.F. Mohammed, T. Wu, O.M. Bakr, Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells, Advanced Materials 28(17) (2016) 3383-3390. https://doi.org/10.1002/adma.201506292.
[232] Z. Chen, B. Turedi, A.Y. Alsalloum, C. Yang, X. Zheng, I. Gereige, A. AlSaggaf, O.F. Mohammed, O.M. Bakr, Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency, ACS Energy Letters 4(6) (2019) 1258-1259. https://doi.org/10.1021/acsenergylett.9b00847.
[233] M. Stolterfoht, C.M. Wolff, Y. Amir, A. Paulke, L. Perdigón-Toro, P. Caprioglio, D. Neher, Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells, Energy & Environmental Science 10(6) (2017) 1530-1539. https://doi.org/10.1039/C7EE00899F.
[234] J. Chen, D.J. Morrow, Y. Fu, W. Zheng, Y. Zhao, L. Dang, M.J. Stolt, D.D. Kohler, X. Wang, K.J. Czech, M.P. Hautzinger, S. Shen, L. Guo, A. Pan, J.C. Wright, S. Jin, Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO3), Journal of the American Chemical Society 139(38) (2017) 13525-13532. https://doi.org/10.1021/jacs.7b07506.
[235] Y. Wang, X. Sun, Z. Chen, Y.-Y. Sun, S. Zhang, T.-M. Lu, E. Wertz, J. Shi, High-Temperature Ionic Epitaxy of Halide Perovskite Thin Film and the Hidden Carrier Dynamics, Advanced Materials 29(35) (2017) 1702643. https://doi.org/10.1002/adma.201702643.
[236] Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang, S. Liu, Thinness- and Shape-Controlled Growth for Ultrathin Single-Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices, Advanced Materials 28(41) (2016) 9204-9209. https://doi.org/10.1002/adma.201601995.
[237] A.A. Zhumekenov, V.M. Burlakov, M.I. Saidaminov, A. Alofi, M.A. Haque, B. Turedi, B. Davaasuren, I. Dursun, N. Cho, A.M. El-Zohry, M. De Bastiani, A. Giugni, B. Torre, E. Di Fabrizio, O.F. Mohammed, A. Rothenberger, T. Wu, A. Goriely, O.M. Bakr, The Role of Surface Tension in the Crystallization of Metal Halide Perovskites, ACS Energy Letters 2(8) (2017) 1782-1788. https://doi.org/10.1021/acsenergylett.7b00468.
[238] Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang, S. Liu, 20-mm-Large Single-Crystalline Formamidinium-Perovskite Wafer for Mass Production of Integrated Photodetectors, Advanced Optical Materials 4(11) (2016) 1829-1837. https://doi.org/10.1002/adom.201600327.
[239] J. Zhao, G. Kong, S. Chen, Q. Li, B. Huang, Z. Liu, X. San, Y. Wang, C. Wang, Y. Zhen, H. Wen, P. Gao, J. Li, Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells, Science Bulletin 62(17) (2017) 1173-1176. https://doi.org/10.1016/j.scib.2017.08.022.
[240] Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, S. Tang, Q. Wang, X. Xiao, Y. Bai, Y. Deng, J. Huang, Thin single crystal perovskite solar cells to harvest below-bandgap light absorption, Nature Communications 8(1) (2017) 1890. https://doi.org/10.1038/s41467-017-02039-5.
[241] J. Schlipf, A.M. Askar, F. Pantle, B.D. Wiltshire, A. Sura, P. Schneider, L. Huber, K. Shankar, P. Müller-Buschbaum, Top-Down Approaches Towards Single Crystal Perovskite Solar Cells, Scientific Reports 8(1) (2018) 4906. https://doi.org/10.1038/s41598-018-23211-x.
[242] Q. Lv, Z. Lian, W. He, J.-L. Sun, Q. Li, Q. Yan, A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films, Journal of Materials Chemistry C 6(16) (2018) 4464-4470. https://doi.org/10.1039/C8TC00842F.
[243] H.-S. Rao, B.-X. Chen, X.-D. Wang, D.-B. Kuang, C.-Y. Su, A micron-scale laminar MAPbBr3 single crystal for an efficient and stable perovskite solar cell, Chemical Communications 53(37) (2017) 5163-5166. https://doi.org/10.1039/C7CC02447A.
[244] H.-L. Yue, H.-H. Sung, F.-C. Chen, Seeded Space-Limited Crystallization of CH3NH3PbI3 Single-Crystal Plates for Perovskite Solar Cells, Advanced Electronic Materials 4(7) (2018) 1700655. https://doi.org/10.1002/aelm.201700655.
[245] Y. Huang, Y. Zhang, J. Sun, X. Wang, J. Sun, Q. Chen, C. Pan, H. Zhou, The Exploration of Carrier Behavior in the Inverted Mixed Perovskite Single-Crystal Solar Cells, Advanced Materials Interfaces 5(14) (2018) 1800224. https://doi.org/10.1002/admi.201800224.
[246] Y. Liu, X. Ren, J. Zhang, Z. Yang, D. Yang, F. Yu, J. Sun, C. Zhao, Z. Yao, B. Wang, Q. Wei, F. Xiao, H. Fan, H. Deng, L. Deng, S.F. Liu, 120 mm single-crystalline perovskite and wafers: towards viable applications, Science China Chemistry 60(10) (2017) 1367-1376. https://doi.org/10.1007/s11426-017-9081-3.
[247] Y. Liu, Q. Dong, Y. Fang, Y. Lin, Y. Deng, J. Huang, Fast Growth of Thin MAPbI3 Crystal Wafers on Aqueous Solution Surface for Efficient Lateral-Structure Perovskite Solar Cells, Advanced Functional Materials 29(47) (2019) 1807707. https://doi.org/10.1002/adfm.201807707.
[248] A.Y. Alsalloum, B. Turedi, X. Zheng, S. Mitra, A.A. Zhumekenov, K.J. Lee, P. Maity, I. Gereige, A. AlSaggaf, I.S. Roqan, O.F. Mohammed, O.M. Bakr, Low-Temperature Crystallization Enables 21.9% Efficient Single-Crystal MAPbI3 Inverted Perovskite Solar Cells, ACS Energy Letters 5(2) (2020) 657-662. https://doi.org/10.1021/acsenergylett.9b02787.
[249] A.Y. Alsalloum, B. Turedi, K. Almasabi, X. Zheng, R. Naphade, S.D. Stranks, O.F. Mohammed, O.M. Bakr, 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap, Energy & Environmental Science 14(4) (2021) 2263-2268. https://doi.org/10.1039/D0EE03839C.
[250] M.N. Lintangpradipto, H. Zhu, B. Shao, W.J. Mir, L. Gutiérrez-Arzaluz, B. Turedi, M. Abulikemu, O.F. Mohammed, O.M. Bakr, Single-Crystal Methylammonium-Free Perovskite Solar Cells with Efficiencies Exceeding 24% and High Thermal Stability, ACS Energy Letters 8(11) (2023) 4915-4922. https://doi.org/10.1021/acsenergylett.3c01935.
[251] D. Cao, S. Gong, X. Shu, D. Zhu, S. Liang, Preparation of ZnO nanoparticles with high dispersibility based on oriented attachment (OA) process, Nanoscale Res. Lett. 14 (2019) 210. https://doi.org/10.1186/s11671-019-3038-3.
[252] C. Han, F. Wang, C. Gao, P. Liu, Y. Ding, S. Zhang, M. Yang, Transparent epoxy–ZnO/CdS nanocomposites with tunable UV and blue light-shielding capabilities, J. Mater. Chem. C 3 (2015) 5065-5072. https://doi.org/10.1039/C4TC02880E.
[253] I. Levchuk, Y. Hou, M. Gruber, M. Brandl, P. Herre, X. Tang, F. Hoegl, M. Batentschuk, A. Osvet, R. Hock, W. Peukert, R.R. Tykwinski, C.J. Brabec, Deciphering the Role of Impurities in Methylammonium Iodide and Their Impact on the Performance of Perovskite Solar Cells, Advanced Materials Interfaces 3(22) (2016) 1600593. https://doi.org/10.1002/admi.201600593.
[254] M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C.J. Fell, S.R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. von Hauff, H. Hoppe, J. Kettle, H. Köbler, M.S. Leite, S. Liu, Y.-L. Loo, J.M. Luther, C.-Q. Ma, M. Madsen, M. Manceau, M. Matheron, M. McGehee, R. Meitzner, M.K. Nazeeruddin, A.F. Nogueira, Ç. Odabaşı, A. Osherov, N.-G. Park, M.O. Reese, F. De Rossi, M. Saliba, U.S. Schubert, H.J. Snaith, S.D. Stranks, W. Tress, P.A. Troshin, V. Turkovic, S. Veenstra, I. Visoly-Fisher, A. Walsh, T. Watson, H. Xie, R. Yıldırım, S.M. Zakeeruddin, K. Zhu, M. Lira-Cantu, Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures, Nat. Energy 5 (2020) 35-49. https://doi.org/10.1038/s41560-019-0529-5.
[255] F. Lang, O. Shargaieva, V.V. Brus, H.C. Neitzert, J. Rappich, N.H. Nickel, Influence of radiation on the properties and the stability of hybrid perovskites, Adv. Mater. 30 (2018) 1702905. https://doi.org/10.1002/adma.201702905.
[256] D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J.R. Durrant, S.A. Haque, Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells, Energy Environ. Sci. 9 (2016) 1655-1660. https://doi.org/10.1039/C6EE00409A.
[257] Y. Li, X. Xu, C. Wang, B. Ecker, J. Yang, J. Huang, Y. Gao, Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film, J. Phys. Chem. C 121 (2017) 3904-3910. https://doi.org/10.1021/acs.jpcc.6b11853.
[258] N.H. Nickel, F. Lang, V.V. Brus, O. Shargaieva, J. Rappich, Unraveling the light-induced degradation mechanisms of CH3NH3PbI3 perovskite films, Adv. Electron. Mater. 3 (2017) 1700158. https://doi.org/10.1002/aelm.201700158.
[259] R.-P. Xu, Y.-Q. Li, T.-Y. Jin, Y.-Q. Liu, Q.-Y. Bao, C. O’Carroll, J.-X. Tang, In situ observation of light illumination-induced degradation in organometal mixed-halide perovskite films, ACS Appl. Mater. Interfaces 10 (2018) 6737-6746. https://doi.org/10.1021/acsami.7b18389.
[260] X. Tang, M. Brandl, B. May, I. Levchuk, Y. Hou, M. Richter, H. Chen, S. Chen, S. Kahmann, A. Osvet, F. Maier, H.-P. Steinrück, R. Hock, G.J. Matt, C.J. Brabec, Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors, J. Mater. Chem. A 4 (2016) 15896-15903. https://doi.org/10.1039/C6TA06497C.
[261] J. Wei, Q. Wang, J. Huo, F. Gao, Z. Gan, Q. Zhao, H. Li, Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells, Advanced Energy Materials 11(3) (2021) 2002326. https://doi.org/10.1002/aenm.202002326.
[262] B. Yoon, C.-S. Park, H.-J. Song, J. Kwak, S.-S. Lee, H. Lee, Perovskite solar cells integrated with blue cut-off filters for mitigating light-induced degradation, Opt. Express 30 (2022) 31367-31380. https://doi.org/10.1364/OE.465848.
[263] T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nat. Commun 4 (2013) 2885. https://doi.org/10.1038/ncomms3885.
[264] I. Hwang, M. Baek, K. Yong, Core/Shell Structured TiO2/CdS electrode to enhance the light stability of perovskite solar cells, ACS Appl. Mater. Interfaces 7 (2015) 27863-27870. https://doi.org/10.1021/acsami.5b09442.
[265] W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan, A.A. Haghighirad, M.B. Johnston, L. Wang, H.J. Snaith, Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification, Energy Environ. Sci. 9 (2016) 490-498. https://doi.org/10.1039/C5EE03522H.
[266] J. Wei, F. Guo, B. Liu, X. Sun, X. Wang, Z. Yang, K. Xu, M. Lei, Y. Zhao, D. Xu, UV-inert ZnTiO3 electron selective layer for photostable perovskite solar cells, Adv. Energy Mater. 9 (2019) 1901620. https://doi.org/10.1002/aenm.201901620.
[267] F. Guo, X. Sun, B. Liu, Z. Yang, J. Wei, D. Xu, Enhanced lifetime and photostability with low-temperature mesoporous ZnTiO3/compact SnO2 electrodes in perovskite solar cells, Angew. Chem. Int. Ed. 58 (2019) 18460-18465. https://doi.org/10.1002/anie.201911796.
[268] K. Deng, Q. Chen, Y. Shen, L. Li, Improving UV stability of perovskite solar cells without sacrificing efficiency through light trapping regulated spectral modification, Science Bulletin 66(23) (2021) 2362-2368. https://doi.org/10.1016/j.scib.2021.06.022.
[269] J.J. De Yoreo, P.U.P.A. Gilbert, N.A.J.M. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H. Zhang, J.D. Rimer, A. Navrotsky, J.F. Banfield, A.F. Wallace, F.M. Michel, F.C. Meldrum, H. Cölfen, P.M. Dove, Crystallization by particle attachment in synthetic, biogenic, and geologic environments, Science 349 (2015) aaa6760. https://doi.org/10.1126/science.aaa6760.
[270] J. Geng, X.-D. Jia, J.-J. Zhu, Sonochemical selective synthesis of ZnO/CdS core/shell nanostructures and their optical properties, Cryst. Eng. Comm. 13 (2011) 193-198. https://doi.org/10.1039/C0CE00180E.
[271] K.-C. Hsiao, M.-H. Jao, K.-Y. Tian, T.-H. Lin, D.-P. Tran, H.-C. Liao, C.-H. Hou, J.-J. Shyue, M.-C. Wu, W.-F. Su, Acetamidinium cation to confer ion immobilization and structure stabilization of organometal halide perovskite toward long life and high-efficiency p-i-n planar solar cell via air-processable method, Sol. RRL 4 (2020) 202000197. https://doi.org/10.1002/solr.202000197.
[272] Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle, U. Bach, L. Spiccia, Y.-B. Cheng, Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity, J. Mater Chem. A 3(15) (2015) 8139-8147. https://doi.org/10.1039/C5TA00358J.
[273] A. Dualeh, P. Gao, S.I. Seok, M.K. Nazeeruddin, M. Grätzel, Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters, Chem. Mater. 26(21) (2014) 6160-6164. https://doi.org/10.1021/cm502468k.
[274] N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S.A. Haque, The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers, Angew. Chem. Int. Ed. 54(28) (2015) 8208-8212. https://doi.org/https://doi.org/10.1002/anie.201503153.
[275] A.D. Sheikh, A. Bera, M.A. Haque, R.B. Rakhi, S.D. Gobbo, H.N. Alshareef, T. Wu, Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells, Sol. Energy Mater. Sol. Cells 137 (2015) 6-14. https://doi.org/https://doi.org/10.1016/j.solmat.2015.01.023.
[276] C. Ma, N.-G. Park, A Realistic Methodology for 30% Efficient Perovskite Solar Cells, Chem 6(6) (2020) 1254-1264. https://doi.org/10.1016/j.chempr.2020.04.013.
[277] X. Zheng, A.Y. Alsalloum, Y. Hou, E.H. Sargent, O.M. Bakr, All-Perovskite Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability, Accounts of Materials Research 1(1) (2020) 63-76. https://doi.org/10.1021/accountsmr.0c00017.
[278] B. Turedi, V. Yeddu, X. Zheng, D.Y. Kim, O.M. Bakr, M.I. Saidaminov, Perovskite Single-Crystal Solar Cells: Going Forward, ACS Energy Letters 6(2) (2021) 631-642. https://doi.org/10.1021/acsenergylett.0c02573.
[279] Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia, X. Tao, Bulk crystal growth of hybrid perovskite material CH3NH3PbI3, CrystEngComm 17(3) (2015) 665-670. https://doi.org/10.1039/C4CE02106A.
[280] D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei, H.S. Kang, J.-P. Ahn, J.W. Lee, J.K. Song, Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning, Nano Letters 15(8) (2015) 5191-5199. https://doi.org/10.1021/acs.nanolett.5b01430
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92967-
dc.description.abstract在本博士論文的第一部分,三碘化鉛甲基銨 (MAPbI3,其中MA代表甲基銨) 鈣鈦礦太陽能電池(PVSCs)的穩定性透過以下方法進行仔細的檢測:氧化鋅-硫化鎘核殼 (ZnO@CdS) 奈米顆粒材料嵌入環氧樹脂膜(EP-ZC膜 具有不同比例的 CdS 殼層厚度,即 EP-ZC1、EP-ZC3 和 EP-ZC6)、元件封裝(玻璃片和紫外線固化凝膠)、以及在不同溫度條件下(10°C、室溫(無溫控)、65°C)進行測試。EP-ZC膜用於屏蔽短波長的太陽光線(紫外線、近紫外線、紫光和深藍光),這些短波長的光線會導致MAPbI3產生光降解,進而降低PVSCs的轉換效率(PCE)。此外,在連續500小時的光照測試中,也記錄了部分元件的外部量子效率(EQE)光譜、與電流密度(J)-電壓(V)的測量結果。此外,透過飛行時間-二次離子質譜法(TOF-SIMS)的分析,來定量比較有、無使用具有光遮蔽功能的EP-ZC膜之鈣態礦封裝元件因MAPbI3降解所產生的碘化物,分別在溫度10°C和65°C下之差異。EP-ZC6膜經10°C、連續500小時光浸潤後之封裝PVSCs元件中,仍維持了98%的初始元件效率,展現出最佳的保護效果。從本研究連續光照的研究結果中來看,我們可以優先考量濕度、溫度和光對PVSCs穩定性的影響。
而本論文的第二部分則集中在多晶和單晶的鈣態礦元件穩定性的比較分析。我們成功地透過擴散輔助空間限制生長法製備了單晶薄膜的鈣態礦元件。在短期元件穩定性的結果中揭示了無論是否使用EP-ZC6膜、或有無元件封裝,單晶鈣態礦元件的穩定性皆比多晶鈣態礦元件更為優良。這些發現指出,穩定、且高效的單晶鈣態礦元件,在產業邁向商業化過程中是一個很有前途的候選者。
zh_TW
dc.description.abstractIn the first part of this Ph.D. thesis, the stability of MAPbI3-based (MA stands for methylammonium) perovskite solar cells (PVSCs) have been carefully examined by ZnO@CdS nanoparticle-embedded epoxy films (EP-ZC films with varying ratios of CdS shell layer thickness i.e., EP-ZC1, EP-ZC3, and EP-ZC6), device encapsulation (of glass sheet and UV-curing gel), and in different temperatures, 10 oC, room temperature (no temperature control), and 65 oC. EP-ZC films are used for shielding the short wavelength of the sunlight (UV, near UV, violet, and deep blue) which causes the photodegradation of MAPbI3 and hence the decline of power conversion efficiency (PCE) of PVSCs. Some external quantum efficiency (EQE) spectra of the device have been recorded alongside of the 500 hr continuous light soaking measurement of current density (J)voltage (V) of the devices. The time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis has been performed for a quantitative comparison of the iodide derived from the degradation of MAPbI3 in the encapsulated devices with or without the light-shielding EP-ZC films at 10 oC and 65 oC, respectively. The EP-ZC6 film shows the best protection for encapsulated PVSCs with a 98% of the initial PCE at 10°C after 500 hr continuous light soaking. In this study, from the continuous light soaking results we can prioritize the moisture, temperature, and light in the influence of the stability of PVSCs.
The second portion of the Ph.D. thesis is centered around a comparative analysis between the stability of polycrystalline and single crystal MAPbI3 PVSCs. We have successfully fabricated thin-film single crystal-based MAPbI3 PVSCs using the diffusion-assisted space-confined growth method. Short-term stability results with or without the EP-ZC6 film and with or without encapsulation reveal that single-crystal-based PVSCs are more stable than their polycrystalline counterparts. These findings indicate that single-crystal-based PVSCs are a promising candidate for stable and efficient PVSCs as the industry moves towards commercialization.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-09T16:10:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-09T16:10:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
Chinese Abstract iii
Abstract v
Acknowledgements vii
Table of contents ix
List of Figures xii
List of Tables xix
List of Abbreviations xxii
Chapter 1 Introduction 1
1.1 Solar energy background 1
1.2 Photovoltaic Technologies 1
1.3 Comparison of first, second, and third generation solar cells 4
1.4 Organic inorganic hybrid perovskite structure 5
1.5 Perovskite solar cells device architecture 6
1.6 Deposition techniques of perovskite films 8
1.7 Stability of perovskite solar cells 9
1.7.1 Moisture effect 10
1.7.2 Temperature effect 14
1.7.3 Light effect 16
1.7.4 Oxygen effect 19
1.7.5 Interaction with metallic electrode material 19
1.7.6 Comparison of literature reported stability data of MAPbI3 based PVSCs 21
1.7.7 Single crystal perovskite solar cells 25
1.7.8 Growth of perovskite single crystal thin film (SCTF) 27
1.8 Motivation 32
Chapter 2 Materials and Methods 35
2.1 Materials 35
2.1.1 Synthesis of ZnO QDs 36
2.1.2 Synthesis of ZnO@CdS QDs 36
2.1.3 Preparation of ZnO@CdS (ZC1, ZC3, and ZC6) embedded epoxy films (EP-ZC films) 37
2.1.4 Synthesis of methylammonium iodide (MAI), CH3NH3I 37
2.1.5 Growth of MAPbI3 based thin film single crystal 38
2.2 Physical characterization and instrumentation 38
2.2.1 UV-Vis absorption: Hawlett Packard 8453 / HALO DB-20 Dynamica 38
2.2.2 X-ray diffractometer (XRD): Bruker D8 Advance X-ray Diffractometer 39
2.2.3 Surface profiler (α - step): Detak 150 39
2.2.4 Field-Emission Scanning Electron Microscope (FE-SEM): Ultra Plus Carl Zeiss 40
2.2.5 High-Resolution Transmission Electron Microscope (HR-TEM): JEM-2100F 40
2.2.6 Energy Dispersive X-ray Spectrometer (EDS): Oxford INCA Energy system 41
2.2.7 Solar simulator: Newport 94043A 41
2.2.8 External Quantum Efficiency: Newport 41
2.2.9 Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS): PHI TRIFT V nano-TOF (ULVAC-PHI, Japan) 42
2.3 Solar cell device fabrication and photovoltaic characterization 43
2.3.1 Fabrication of inverted MAPbI3 polycrystalline thin-film PVSCs 43
2.3.2 Modification to the polycrystalline thin film PVSCs device architecture 45
2.3.3 Fabrication of MAPbI3 thin-film single crystal PVSCs 46
2.3.4 500 hr continuous light-soaking J-V and EQE measurement set-up at 25 °C 48
2.3.5 500 hr continuous light-soaking J-V measurement set-up at 10 °C 49
2.3.6 500 hr continuous light-soaking J-V measurement set-up at 65 °C 50
2.3.7 Perovskite thin-film single crystal device J-V measurement set-up 51
Chapter 3 Mitigating the degradation of MAPbI3 perovskite solar cells under continuous light soaking with ZnO@CdS:epoxy short-wavelength-sunlight shield films 53
3.1 Introduction 53
3.2 Results and discussions 55
3.2.1 Structure and morphology of ZnO@CdS NPs and the optical properties of EP-ZC films 55
3.2.2 Device architecture for 500 hr continuous light soaking 58
3.2.3 Device stability influenced by light 59
3.2.4 Device stability influenced by temperature (heat) 68
3.2.5 Comparing device stability influenced by moisture, temperature (heat), light, or oxygen 91
Chapter 4 MAPbI3 single crystal thin-film solar cell: a short-term stability comparison study 103
4.1 Introduction 103
4.2 Results and discussion 104
4.2.1 Characterization of perovskite thin-film single crystals 104
4.2.2 Solar cell performance analysis 105
4.2.3 Stability study 106
Chapter 5 Conclusions and future outlook 110
5.1 Conclusions 110
5.2 Future outlook 111
References 112
Appendix 155
-
dc.language.isoen-
dc.title三碘化鉛甲基銨之鈣鈦礦太陽能電池的穩定性研究zh_TW
dc.titleStability study on MAPbI3 based Perovskite Solar Cellsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor陳貴賢zh_TW
dc.contributor.coadvisorKuei-Hsien Chenen
dc.contributor.oralexamcommittee王立義;王俊凱;陶雨臺zh_TW
dc.contributor.oralexamcommitteeLee-Yih Wang;Juen-Kai Wang;Yu-Tai Taoen
dc.subject.keyword三碘化鉛甲基銨,多晶薄膜鈣鈦礦太陽能電池,工作穩定性,光遮蔽,連續光浸潤,薄膜單晶生長,單晶鈣鈦礦太陽能電池,zh_TW
dc.subject.keywordMethylammonium lead triiodide,Polycrystalline thin-film perovskite solar cells,Operational stability,Light shielding,Continuous light soaking,Thin-film single crystal growth,Single-crystal perovskite solar cells,en
dc.relation.page157-
dc.identifier.doi10.6342/NTU202401557-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept分子科學與技術國際研究生博士學位學程-
dc.date.embargo-lift2029-07-08-
顯示於系所單位:分子科學與技術國際研究生博士學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
3.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved