Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92962
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅楸善zh_TW
dc.contributor.advisorChiou-Shann Fuhen
dc.contributor.author張婷淇zh_TW
dc.contributor.authorTing-Chi Changen
dc.date.accessioned2024-07-09T16:08:43Z-
dc.date.available2024-07-10-
dc.date.copyright2024-07-09-
dc.date.issued2024-
dc.date.submitted2024-06-11-
dc.identifier.citation[1] P. Virtanen, R. Gommers, T. E. Oliphant et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, no. 3, pp. 261-272, doi: 10.1038/s41592-019-0686-2, 2020.
[2] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5-32, 2001.
[3] G. D. Clifford, C. Liu, B. Moody, L. H. Lehman, I. Silva, Q. Li, A. Johnson, and R. G. Mark, “AF Classification from a Short Single Lead ECG Recording: The PhysioNet Computing in Cardiology Challenge,” Computing in Cardiology, vol. 44, pp. 1-4, doi: 10.22489/CinC.2017.065-469, 2017.
[4] K. Kazemi, J. Laitala, I. Azimi, P. Liljeberg and A. M. Rahmani, “Robust PPG Peak Detection Using Dilated Convolutional Neural Networks,” Sensors, vol. 22, no. 16, pp. 6054, doi: 10.3390/s22166054, 2022.
[5] M. Ragab, E. Eldele, W. L. Tan, C.-S. Foo, Z. Chen et. al., “ADATIME: A Benchmarking Suite for Domain Adaptation on Time Series Data,” ACM Transactions on Knowledge Discovery from Data, vol. 17, no. 8, pp. 1-18, 2023.
[6] E. Tseng, F. Yu, Y. Yang, F. Mannan, K. S. Arnaud, D. Nowrouzezahrai, J. F. Lalonde and F. Heide, “Hyperparameter Optimization in Black-Box Image Processing Using Differentiable Proxies,” ACM Trans. Graph., vol. 38, no. 4, pp. 27-1, 2019.
[7] P. Tchatchoua, G. Graton, M. Ouladsine and J. F. Christaud, “Application of 1D ResNet for Multivariate Fault Detection on Semiconductor Manufacturing Equipment,” Sensors, vol. 23, no. 22, 9099, pp. 1-19, 2023.
[8] N. Konz and M. Mazurowski, “Reverse Engineering Breast MRIs: Predicting Acquisition Parameters Directly from Images,” Proceedings of Conference on Medical Imaging with Deep Learning, Nashville, TN, vol. 54, pp.1-17, 2023.
[9] F. Qiao, L. Zhao and X. Peng, “Learning to Learn Single Domain Generalization,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, pp. 12556-12565, 2020.
[10] G. Bai, C. Ling, and L. Zhao, “Temporal Domain Generalization with Drift-Aware Dynamic Neural Networks,” Proceedings of International Conference on Learning Representations, Kigali, Rwanda, pp. 1-19, 2022.
[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks,” Science, vol. 313, no. 5786, pp. 504-507, 2006.
[12] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv:1312.6114, 2013.
[13] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Networks,” arXiv:1406.2661, 2014.
[14] C. L. Tee and A. Pascual, “Impact of Quad Flat No Lead package (QFN) on automated X-ray inspection (AXI),” Proceedings of IEEE International Test Conference, Santa Clara, CA, pp. 1-10, doi: 10.1109/TEST.2007.4437601, 2007.
[15] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, pp. 770-778. 2016.
[16] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-generation Hyperparameter Optimization Framework,” Proceedings of International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, pp. 2623–2631, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92962-
dc.description.abstract印刷電路板(PCB)元件檢測對於電子產業中的品質和功能保證至關重要。本研究旨在開發一個自動化的PCB引腳缺陷檢測算法參數推薦系統,重點在於準確識別引腳元件資料中的heel和toe位置。傳統的算法參數調整方法高度依賴產線工程師的經驗,這種方法既不一致又耗時。為了解決這個問題,我們提出了張參數演算法,結合了一維變分自編碼器(1D VAE)進行數據生成和一維殘差網絡(1D ResNet)進行模型訓練。
1D VAE被用來生成多樣化的數據,增強訓練數據集並提升模型的泛化能力。隨後,1D ResNet在原始數據和生成數據上進行訓練,以準確預測heel和toe的位置。我們進行了綜合實驗來評估所提出算法在不同PCB資料集上的性能。結果顯示,張參數演算法能有效提升模型的泛化能力,適應各種PCB配置,提供可靠的參數推薦。
zh_TW
dc.description.abstractThe inspection of Printed Circuit Board (PCB) components is critical in the electronics industry to ensure the quality and functionality of electronic devices. This study aims to develop an automated parameter recommendation system for PCB pin defect inspection algorithms, focusing on accurately identifying heel and toe positions in pin component data. Traditional methods for adjusting algorithm parameters rely heavily on the experience of production line engineers, which can be inconsistent and time-consuming. To address this, we propose ChangParameter algorithm, which uses a combination of a one-dimensional Variational Auto-Encoder (1D VAE) for data generation and a one-dimensional Residual Network (1D ResNet) for model training.
The 1D VAE is employed to generate diverse data, enhancing the training dataset and improving the model's generalization capabilities. The 1D ResNet is then trained on both the original and generated data to predict the heel and toe positions accurately. We conduct comprehensive experiments to evaluate the performance of the proposed algorithm across different PCB datasets. The results demonstrate that ChangParameter algorithm effectively enhances the model's ability to generalize and adapt to various PCB configurations, providing reliable parameter recommendations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-09T16:08:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-09T16:08:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Introduction to Pin Component Data and Parameters 2
1.3 Challenges in Parameter Recommendation 4
1.4 Thesis Organization 6
Chapter 2 Related Works 7
2.1 Mathematical Statistical Analysis Methods 7
2.2 Regression Analysis Methods 9
2.3 Deep Learning-Based Methods 11
2.3.1 Deep Learning of One-Dimensional Sequences 11
2.3.2 Regression with Deep Learning 13
2.3.3 Domain Adaptation in Deep Learning 15
2.3.4 Data Generation in Deep Learning 17
Chapter 3 Background 20
3.1 Description of Pin Component Data 21
3.2 Reason for Using Deep Learning in Parameter Recommendation 24
Chapter 4 Methodology 26
4.1 Overview 26
4.2 Data Preprocessing 27
4.2.1 Hybrid Sampling Method 27
4.2.2 Data Normalization 30
4.3 Data Generation 31
4.3.1 1D VAE Model Principle 31
4.3.2 1D VAE Model Architecture 33
4.4 Model Training 35
4.4.1 1D Resnet Model Principle 35
4.4.2 1D ResNet Model Architecture 37
4.4.3 Hyperparameter Tuning with Optuna 40
Chapter 5 Experimental Results 42
5.1 Computer Hardware Configuration 42
5.2 Evaluation Metrics 43
5.2.1 MAE (Mean Absolute Error) 44
5.2.2 MSE (Mean Squared Error) 44
5.2.3 R² (Coefficient of Determination) 45
5.2.4 Entropy 46
5.3 Experimental Setup 47
5.3.1 Datasets 47
5.3.2 Data Generation Datasets 48
5.3.3 Experiment Configurations 51
5.4 Parameter Recommendation Results 53
5.4.1 Experimental Evaluation Metrics 54
5.4.2 Comparison of Experimental Results of Successful Predictions 56
5.4.3 Comparison of Experimental Results of Unsuccessful Predictions 64
Chapter 6 Conclusion and Future Works 69
References 70
-
dc.language.isoen-
dc.subject深度學習zh_TW
dc.subject印刷電路板(PCB)元件檢測zh_TW
dc.subject參數推薦zh_TW
dc.subject一維殘差網絡zh_TW
dc.subject一維變分自編碼器zh_TW
dc.subjectone-dimensional Variational Autoencoderen
dc.subjectone-dimensional Residual Networken
dc.subjectParameter Recommendationen
dc.subjectDeep Learningen
dc.subjectPCB Inspectionen
dc.title張參數:印刷電路板瑕疵檢測演算法參數推薦zh_TW
dc.titleChangParameter: Printed Circuit Board Defect Inspection Algorithm Parameter Recommendationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee巫宗昇;方瓊瑤zh_TW
dc.contributor.oralexamcommitteeZong-Sheng Wu;Chiung-Yao Fangen
dc.subject.keyword印刷電路板(PCB)元件檢測,深度學習,一維變分自編碼器,一維殘差網絡,參數推薦,zh_TW
dc.subject.keywordPCB Inspection,Deep Learning,one-dimensional Variational Autoencoder,one-dimensional Residual Network,Parameter Recommendation,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202401133-
dc.rights.note未授權-
dc.date.accepted2024-06-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved