請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92954
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳文方 | zh_TW |
dc.contributor.advisor | Wen-Fang Wu | en |
dc.contributor.author | 許祐甄 | zh_TW |
dc.contributor.author | Yu-Chen Hsu | en |
dc.date.accessioned | 2024-07-08T16:14:12Z | - |
dc.date.available | 2024-07-09 | - |
dc.date.copyright | 2024-07-08 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-06-24 | - |
dc.identifier.citation | Mainpac, "What is Reliability Centered Maintenance RCM ?" Retrieved December 28, 2023, from https://mainpac.com/learning-center/reliability-centred-maintenance/, 2019.
J. Moubray, Reliability-Centered Maintenance, Industrial Press Inc, 2001. S. Fore and A. Msipha, "Preventive maintenance using reliability centred maintenance (RCM): A case study of a ferrochrome manufacturing company," South African Journal of Industrial Engineering, Vol. 21, Issue.1, pp. 207-234, 2010. B. Yssaad, M. Khiat and A. Chaker, "Reliability centered maintenance optimization for power distribution systems," International Journal of Electrical Power & Energy Systems, Vol. 55, pp. 108-115, 2014. S. H. Salim, S. A. Mazlan and S. A. Salim, "A conceptual framework to determine medical equipment maintenance in hospital using RCM method," In MATEC Web of Conferences, Vol 266, pp. 2011, 2019. J. Hopkinson, N. Perera and E. Kiazim, "Investigating reliability centered maintenance (RCM) for public road mass transportation vehicles," In MATEC Web of Conferences, Vol. 81, pp. 8006, EDP Sciences, 2016. H. S. Kim, H. J. Yang, Y. J. Choi, J. K. Hong and H. S. Lee, "Development of a power facility management system using reliability-centered maintenance," 2008 International Conference on Condition Monitoring and Diagnosis, IEEE, 2008. P. Afzalie, F. Keynia and M. Rashidinejad, "A new model for reliability-centered maintenance prioritisation of distribution feeders," Energy, Vol. 171, pp. 701-709, 2019. Z. Ma, Y. Ren, X. Xiang and Z. Turk, "Data-driven decision-making for equipment maintenance," Automation in Construction, Vol. 112, pp. 103103, 2020. R. Gao, L. Wang, R. Teti, D. Dornfeld, S. Kumara, M. Mori and M. Helu, "Cloud-enabled prognosis for manufacturing," CIRP Annals, Vol. 64, Issue 2, pp. 749-772, 2015. S. Ji, X. Han, Y. Hou, Y. Song and Q. Du, "Remaining useful life prediction of airplane engine based on PCA–BLSTM," Sensors, Vol. 20, Issue 16, pp. 4537, 2020. H. Sak, A. W. Senior and F. Beaufays, "Long short-term memory recurrent neural network architectures for large scale acoustic modeling," Interspeech, pp. 338-342, 2014. M. Paolanti et al., "Machine learning approach for predictive maintenance in industry 4.0," 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), IEEE, 2018. G.W. Lindsay, "Attention in psychology, neuroscience, and machine learning," Frontiers in computational neuroscience, Vol. 14, pp. 516985, 2020. A. Galassi, M. Lippi and P. Torroni, "Attention in natural language processing," IEEE transactions on neural networks and learning systems, Vol. 32, Issue 10, pp. 4291-4308, 2020. S. Liu, E. Johns and A. J. Davison, "End-to-end multi-task learning with attention," In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1871-1880, 2019. S. Patil, A. Patil, V. Handikherkar, S. Desai, V. M. Phalle and F. S. Kazi, "Remaining useful life (RUL) prediction of rolling element bearing using random forest and gradient boosting technique," ASME International Mechanical Engineering Congress and Exposition, Vol. 52187, American Society of Mechanical Engineers, 2018. F. Shen and R. Yan, "A new intermediate-domain SVM-based transfer model for rolling bearing RUL prediction," IEEE/ASME Transactions on Mechatronics, Vol. 27, Issue 3, pp. 1357-1369, 2021. G. Sateesh Babu, P. Zhao and X. L. Li, "Deep convolutional neural network based regression approach for estimation of remaining useful life," In Database Systems for Advanced Applications: 21st International Conference, Proceedings, Part I 21, Springer International Publishing Proceedings, pp. 214-228, 2016. Y. Zhang, R. Xiong, H. He and M. G. Pecht, "Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries," IEEE Transactions on Vehicular Technology, Vol. 67, Issue 7, pp. 5695-5705, 2018. M. Ma and Z. Mao, "Deep-convolution-based LSTM network for remaining useful life prediction," IEEE Transactions on Industrial Informatics, Vol. 17, Issue 3, pp. 1658-1667, 2020. H. Miao, B. Li, C. Sun and J. Liu, "Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks," IEEE Transactions on Industrial Informatics, Vol. 5, Issue 9, pp. 5023-5032, 2019. K. Park, Y. Choi, W. J. Choi, H. Y. Ryu and H. Kim, "LSTM-based battery remaining useful life prediction with multi-channel charging profiles," IEEE Access, Vol. 8, pp. 20786-20798, 2020. Z. Chen, M. Wu, R. Zhao, F. Guretno, R. Yan and X. Li, "Machine remaining useful life prediction via an attention-based deep learning approach," IEEE Transactions on Industrial Electronics, Vol. 68, Issue 3, pp. 2521-2531, 2020. H. Zhang, Q. Zhang, S. Shao, T. Niu and X. Yang, "Attention-based LSTM network for rotatory machine remaining useful life prediction," IEEE Access, Vol. 8, pp. 132188-132199, 2020. J. Xia, Y. Feng, C. Lu, C. Fei and X. Xue, "LSTM-based multi-layer self-attention method for remaining useful life estimation of mechanical systems," Engineering Failure Analysis, Vol. 125, Issue 105385, 2021. M. S. Hamada, H. F. Martz, C. S. Reese and A. G. Wilson, Bayesian reliability, Vol. 15, New York: Springer, 2008. Y. Ge, J. Wu and X. M. Jiang, "A prediction method using bayesian theory for remaining useful life. In 2019 International Conference on Quality, Reliability, Risk, " Maintenance, and Safety Engineering (QR2MSE), pp. 856-862, 2019. C. D. Lai, M. Xie and D. N. P. Murthy, "A modified Weibull distribution, " IEEE Transactions on Reliability, Vol. 52, Issue 1, pp. 33-37, 2003. P. Bloomfield, "An exponential model for the spectrum of a scalar time series," Biometrika, Vol. 60, Issue 2, pp. 217-226, 1973. M. Benker, L. Furtner, T. Semm and M. F. Zaeh, "Utilizing uncertainty information in remaining useful life estimation via Bayesian neural networks and Hamiltonian Monte Carlo, " Journal of Manufacturing Systems, Vol. 61, pp. 799-807, 2021. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92954 | - |
dc.description.abstract | 近年來,隨著科技發展,大數據分析變得更為容易,人工智慧的發展也帶出工業4.0、智慧機械等生產製造業的發展需求,其中,預測性維護(predictive maintenance, PdM)常為工程師留意且重視的議題,針對該議題,有人想到「以可靠度為中心之維護」(reliability-centered maintenance, RCM)研究;也有人透過「機器學習」(machine learning, ML)相關方法探討問題;本論文旨在探討由「以可靠度為中心」與「以機器學習為依據」不同思維發展出來的兩種分析方法,在系統或設備預測性維護所獲結果之異同,並探討兩種方法之優劣。本研究分析一批與飛機引擎健康度監控有關的大數據,一方面依照RCM思維,建立一套以指數模型為依據的健康指標,而後依據貝葉斯理論處理監控到之即時數據,以預測引擎之殘餘使用壽命(remaining useful life, RUL);另一方面,依據ML思維,針對監控數據,建立一套長短期記憶(long short-term memory, LSTM)模型來處理提取的特徵並捕捉機械系統或設備的退化過程,並引入多頭注意力機制(multi-head attention)加重數據序列中重要部分,以提高RUL預測的準確度。本研究分析結果顯示,兩種方法都能讓我們依據監控數據預測引擎之RUL,但ML方法較能精確捕捉引擎健康退化程度,有較佳預測;然而,RCM在操作的可解釋性和規則明確性方面則具有較大優勢。 | zh_TW |
dc.description.abstract | Along with technological developments including artificial intelligent, the ability of computer for treating big data has progressed tremendously in recent years. The development of artificial intelligence has also brought about the development needs of production and manufacturing industries such as Industry 4.0 and smart machinery. Among these, ‘predictive maintenance’ (PdM) is a topic of significant interest and importance to engineers. Some researchers focus on ‘reliability-centered maintenance’ (RCM) while others explore the issue through ‘machine learning’ (ML) methodologies. This study aims to investigate the similarities and differences in the results of system or equipment predictive maintenance obtained from the two analytical approaches based on RCM and ML perspectives, as well as to discuss the strengths and weaknesses of both methods. This study analyzes a batch of big data related to the health monitoring of aircraft engines. Following the RCM approach, a set of health indicators based on the exponential model is established, and then the monitored real-time data is processed according to Bayesian theorem to predict the remaining useful life (RUL) of the engines. On the other hand, based on the ML approach, the long short-term memory (LSTM) is used to process the extracted features and capture the degradation process of the mechanical system or equipment, and a multi-head attention mechanism is introduced that emphasizes important parts of the data sequence to improve the accuracy of RUL prediction. The results of this study show that both methods allow us to predict the RUL of the engine based on monitored data. However, the machine learning (ML) method is more accurate in capturing the degradation of engine health, providing better predictions. On the other hand, RCM has a greater advantage in terms of interpretability and clarity of operation rules. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-08T16:14:12Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-08T16:14:12Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 iii 目次 iv 圖次 vi 表次 viii 第一章 緒論 1 第二章 文獻探討 4 2.1以可靠度為中心之維護 4 2.2以機器學習為依據之維護 7 第三章 研究方法 11 3.1數據預處理 11 3.2以可靠度為中心之維護方法 12 3.2.1健康指標 13 3.2.2模型建立 16 3.2.3貝葉斯方法 18 3.2.4定義失效臨界值 20 3.3以機器學習為依據之維護方法 21 3.3.1數據分割 23 3.3.2滑動視窗法 24 3.3.3分段線性退化函數 25 3.3.4 LSTM運作原理 26 3.4模型評估指標 30 第四章 案例分析 31 4.1研究數據與預處理 31 4.2以可靠度為中心之分析 33 4.2.1健康指標 33 4.2.2模型建立 35 4.2.3貝葉斯方法 36 4.2.4失效臨界值 38 4.3以機器學習為依據之分析 39 4.3.1數據分割 39 4.3.2 LSTM模型結合多頭注意力機制 40 4.3.3模型訓練 42 4.4模型評估與討論 44 第五章 結論 49 參考文獻 51 | - |
dc.language.iso | zh_TW | - |
dc.title | 以可靠度為中心與以機器學習為依據之預測性維護研究比較 | zh_TW |
dc.title | Comparison of Researches Between Reliability-Centered and Machine-Learning-Based Predictive Maintenances | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃奎隆;林棋瑋 | zh_TW |
dc.contributor.oralexamcommittee | Kwei-Long Huang;Chi-Wei Lin | en |
dc.subject.keyword | 預測性維護,大數據,健康指標,不確定性,可靠度工程,機器學習,剩餘使用壽命, | zh_TW |
dc.subject.keyword | Predictive maintenance (PdM),Big data,Health indicators (HI),Uncertainty,Reliability engineering,Machine learning,Remaining useful life (RUL), | en |
dc.relation.page | 54 | - |
dc.identifier.doi | 10.6342/NTU202401301 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-06-24 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工業工程學研究所 | - |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。