請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92936
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊台鴻 | zh_TW |
dc.contributor.advisor | Tai-Horng Young | en |
dc.contributor.author | 李致緯 | zh_TW |
dc.contributor.author | Chih-Wei Lee | en |
dc.date.accessioned | 2024-07-08T16:08:57Z | - |
dc.date.available | 2024-07-09 | - |
dc.date.copyright | 2024-07-08 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-05 | - |
dc.identifier.citation | Bray, F., et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024. 74(3): p. 229-263.
Rodriguez-Canales, J., E. Parra-Cuentas, and Wistuba, II, Diagnosis and Molecular Classification of Lung Cancer. Cancer Treat Res, 2016. 170: p. 25-46. Lemjabbar-Alaoui, H., et al., Lung cancer: Biology and treatment options. Biochim Biophys Acta, 2015. 1856(2): p. 189-210. Barros-Filho, M.C., et al., Tumour suppressor genes with oncogenic roles in lung cancer. Genes and Cancer, 2019(3): p. 1-17. Villano, J.L., et al., Incidence of brain metastasis at initial presentation of lung cancer. Neuro-Oncology, 2015. 17(1): p. 122-128. Kelly, W.J., N.J. Shah, and D.S. Subramaniam, Management of Brain Metastases in Epidermal Growth Factor Receptor Mutant Non-Small-Cell Lung Cancer. Front Oncol, 2018. 8: p. 208. Yamamoto, K., et al., -positive lung cancer in a patient with recurrent brain metastases and meningeal dissemination who achieved long-term survival of more than seven years with sequential treatment of five ALK-inhibitors: A case report. Thoracic Cancer, 2021. 12(11): p. 1761-1764. Ali, A., et al., Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Curr Oncol, 2013. 20(4): p. e300-6. Khan, M., et al., Tumor Primary Site and Histology Subtypes Role in Radiotherapeutic Management of Brain Metastases. Front Oncol, 2020. 10: p. 781. Wang, Y., et al., Tumor Immune Microenvironment and Immunotherapy in Brain Metastasis From Non-Small Cell Lung Cancer. Front Immunol, 2022. 13: p. 829451. Chu, X., et al., The Long-Term and Short-Term Efficacy of Immunotherapy in Non-Small Cell Lung Cancer Patients With Brain Metastases: A Systematic Review and Meta-Analysis. Front Immunol, 2022. 13: p. 875488. Achrol, A.S., et al., Brain metastases. Nat Rev Dis Primers, 2019. 5(1): p. 5. Luo, L., et al., The Immune Microenvironment in Brain Metastases of Non-Small Cell Lung Cancer. Front Oncol, 2021. 11: p. 698844. Brabletz, T., et al., EMT in cancer. Nat Rev Cancer, 2018. 18(2): p. 128-134. Dai, L., et al., Cell adhesion molecule 2 (CADM2) promotes brain metastasis by inducing epithelial-mesenchymal transition (EMT) in human non-small cell lung cancer. Ann Transl Med, 2020. 8(7): p. 465. Mohme, M., S. Riethdorf, and K. Pantel, Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nature Reviews Clinical Oncology, 2017. 14(3): p. 155-167. Drapela, S. and A.P. Gomes, Metabolic requirements of the metastatic cascade. Curr Opin Syst Biol, 2021. 28. Blecharz, K.G., et al., Control of the blood-brain barrier function in cancer cell metastasis. Biol Cell, 2015. 107(10): p. 342-71. Luo, K.J., et al., Connexins in Lung Cancer and Brain Metastasis. Front Oncol, 2020. 10: p. 599383. Yousefi, M., et al., Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell Oncol (Dordr), 2017. 40(5): p. 419-441. Jensen, C. and Y. Teng, Is It Time to Start Transitioning From 2D to 3D Cell Culture? Frontiers in Molecular Biosciences, 2020. 7. Ravi, M., et al., 3D cell culture systems: advantages and applications. J Cell Physiol, 2015. 230(1): p. 16-26. Edmondson, R., et al., Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. Assay and Drug Development Technologies, 2014. 12(4): p. 207-218. Caliari, S.R. and J.A. Burdick, A practical guide to hydrogels for cell culture. Nat Methods, 2016. 13(5): p. 405-14. Dou, X., P. Li, and H. Schonherr, Three-Dimensional Microstructured Poly(vinyl alcohol) Hydrogel Platform for the Controlled Formation of Multicellular Cell Spheroids. Biomacromolecules, 2018. 19(1): p. 158-166. Chang, P.H., et al., Chitosan 3D cell culture system promotes naive-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Biomaterials, 2021. 268: p. 120575. Shri, M., et al., Hanging Drop, A Best Three-Dimensional (3D) Culture Method for Primary Buffalo and Sheep Hepatocytes. Sci Rep, 2017. 7(1): p. 1203. Neto, A., P. Levkin, and J. Mano, Patterned superhydrophobic surfaces to process and characterize biomaterials and 3D cell culture. Materials Horizons, 2018. 5(3): p. 379-393. Chen, Q. and Y. Wang, The application of three-dimensional cell culture in clinical medicine. Biotechnol Lett, 2020. 42(11): p. 2071-2082. Tsai, C.W. and T.H. Young, CD44 expression trends of mesenchymal stem-derived cell, cancer cell and fibroblast spheroids on chitosan-coated surfaces. Pure and Applied Chemistry, 2016. 88(9): p. 843-852. Tsai, C.W., J.H. Wang, and T.H. Young, Core/shell multicellular spheroids on chitosan as 3D coculture tumor models. Artificial Cells Nanomedicine and Biotechnology, 2018. 46: p. S651-S660. Seike, T., et al., Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clinical & experimental metastasis, 2011. 28: p. 13-25. Burn, L., et al., The role of astrocytes in brain metastasis at the interface of circulating tumour cells and the blood brain barrier. Frontiers in Bioscience-Landmark, 2021. 26(9): p. 590-601. Placone, A.L., A. Quinones-Hinojosa, and P.C. Searson, The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol, 2016. 37(1): p. 61-9. Harati, K., et al., Tumor-associated fibroblasts promote the proliferation and decrease the doxorubicin sensitivity of liposarcoma cells. Int J Mol Med, 2016. 37(6): p. 1535-41. Kim, S.H., et al., Human lung cancer-associated fibroblasts enhance motility of non-small cell lung cancer cells in co-culture. Anticancer Res, 2013. 33(5): p. 2001-9. Foty, R.A. and M.S. Steinberg, The differential adhesion hypothesis: a direct evaluation. Dev Biol, 2005. 278(1): p. 255-63. Foty, R.A. and M.S. Steinberg, Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int J Dev Biol, 2004. 48(5-6): p. 397-409. Wang, Y.-Y., et al., Cd44 promotes lung cancer cell metastasis through erk–zeb1 signaling. Cancers, 2021. 13(16): p. 4057. Huang, Q., et al., CD44+ lung cancer stem cell-derived pericyte-like cells cause brain metastases through GPR124-enhanced trans-endothelial migration. Cancer Cell, 2023. 41(9): p. 1621-1636. e8. Zhao, Y., et al., A novel risk signature for predicting brain metastasis in patients with lung adenocarcinoma. Neuro Oncol, 2023. 25(12): p. 2207-2220. Lee, J.E., et al., Noggin contributes to brain metastatic colonization of lung cancer cells. Cancer Cell Int, 2023. 23(1): p. 299. Pinto, B., et al., Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics, 2020. 12(12): p. 1186. Lee, S.Y., et al., Three-Dimensional Aggregated Spheroid Model of Hepatocellular Carcinoma Using a 96-Pillar/Well Plate. Molecules, 2021. 26(16). Araki, T., et al., Review of the treatment of non-small cell lung cancer with gefitinib. Clin Med Insights Oncol, 2012. 6: p. 407-21. Morgillo, F., et al., Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open, 2016. 1(3): p. e000060. Wang, Y., et al., Development of epidermal growth factor receptor tyrosine kinase inhibitors against EGFR T790M. Mutation in non small-cell lung carcinoma. Open Med (Wars), 2016. 11(1): p. 68-77. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92936 | - |
dc.description.abstract | 根據世界衛生組織(WHO)統計,肺癌近年來的發生率以及死亡率都是在全世界排名前三的癌症,而此癌症隨著時間的發展,大約會有三、四成的病患發現肺癌細胞有腦轉移的情形,這些轉移後的腫瘤細胞與原位癌細胞相比,其腫瘤的性質、特性會產生改變。
目前腦轉移細胞相關特性的研究仍以二維培養或動物實驗為主,然而,傳統的二維培養對於實際的生理環境機制可能沒辦法完全模擬,而減少動物實驗也是最近這幾年來有許多國家在推廣的計畫,因此,本研究期望可以建立一個能替代動物實驗、且能模擬腦轉移細胞生理環境的平台,並期望能透過此平台來分析其相關特性以及藥物篩選。 本研究利用細胞對於幾丁聚醣低貼附的特性,來建立三維細胞的培養環境,並將肺癌細胞A549與在腦轉移過程中相當重要的角色──星狀細胞CTX-TNA2進行共培養,並觀察在三維培養中共培養細胞的相關性質,如:細胞活性、蛋白表現等。而研究結果發現,我們在三維環境下所構成的共培養細胞球的抗藥性相對於傳統二維培養還要高,且在某些細胞蛋白的表現也有特定的成果。 整體而言,本研究成功地透過幾丁聚醣的特性建立了三維細胞體外模型,提供針對肺癌腦轉移一個新的特性分析、藥物治療的研究平台,未來也期望能將三維模型套用在不同類型的癌細胞腦轉移(如:乳癌),為腦轉移相關癌症研究、治療做出貢獻。 | zh_TW |
dc.description.abstract | According to the statistics from the World Health Organization (WHO), lung cancer has ranked among the top three cancers worldwide in terms of both incidence and mortality rates in recent years. With disease progression, approximately 30% to 40% of patients are found to have brain metastases of lung cancer cells. These metastatic cells undergo changes in their characteristics compared to the primary cancer cells. Currently, research on the characteristics of brain metastatic cells mainly relies on 2D cell culture or animal experiments. However, traditional 2D cell culture may not fully mimic the physiological environment, and reducing animal experiments has been a goal of many countries in recent years. Therefore, this study aims to establish a platform that can serve as an alternative to animal experiments and simulate the physiological environment of brain metastatic cells. The platform is expected to be used for related characteristic analysis and drug screening.
In this study, we utilized the low-adhesive properties of cells to chitosan to establish a three-dimensional cell culture environment. Lung cancer cells A549 and astrocytes CTX-TNA2, which play a crucial role in brain metastasis, were co-cultured to observe the relevant characteristics of cells in a three-dimensional environment, such as cell viability and expression of protein. The experimental results showed that the drug resistance of co-culture spheroids formed in the three-dimensional environment was higher compared to traditional two-dimensional culture, and there was different expression of relevant protein. The results of this study successfully established a three-dimensional cell in vitro model based on chitosan, providing a new platform for characteristic analysis and drug treatment research for lung cancer brain metastasis. In the future, it is also expected to apply the three-dimensional model to other cancer brain metastases (such as breast cancer), contributing to research and treatment of brain metastasis-related cancers. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-08T16:08:57Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-08T16:08:57Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv Contents vi List of Figures ix List of Tables xi Chapter1: Introduction 1 1.1 Lung cancer brain metastasis 1 1.2 Mechanism of brain metastasis 5 1.3 3D cell culture 9 1.4 Chitosan 13 1.5 Motivation and objectives 13 1.6 The development of 3D spheroids model 14 Chapter2: Materials & Methods 15 2.1 Materials 15 2.2 Experimental equipment 17 2.3 Preparation of chitosan-based substrates 18 2.4 Cell culture 18 2.4.1 Direct coculture 19 2.4.2 Insert coculture 19 2.4.3 Conditioned medium test 20 2.4.4 Multicellular spheroids model 20 2.5 Cell viability assay 21 2.6 Cell migration assay 21 2.7 Immunofluorescence staining 22 2.8 ELISA assay 22 2.9 Western blot 23 2.10 Statistical analysis 24 Chapter3: Results 26 3.1 Interaction of cells in various coculture conditions 26 3.2 Distribution of cocultured cells on TCPS 27 3.3 Cell migration of cocultured cells 28 3.4 Drug resistance in A549 cells and cocultured cells on TCPS 30 3.5 Cell distribution of 3D multicellular spheroids on chitosan 35 3.6 The effect of gefitinib treatment on multicellular spheroids 37 3.7 Cytokine release from the coculture cells on TCPS and chitosan 41 3.8 The expression of specific marker of lung cancer brain metastasis 42 Chapter4: Discussion 45 4.1 The interaction between lung cancer and astrocytes in 2D environment 45 4.2 Drug resistance in 2D coculture 46 4.3 Core/shell structure of multicellular spheroids on chitosan 48 4.4 Metastasis marker of 3D spheroids and 2D coculture 49 4.5 Drug resistance in 3D multicellular spheroids 51 Chapter5: Conclusion 54 References 55 | - |
dc.language.iso | en | - |
dc.title | 探討肺癌腦轉移之幾丁聚醣三維體外模型之建立與特性分析 | zh_TW |
dc.title | Development and Characterization of a Chitosan based 3D In Vitro Model for Investigating Lung Cancer Brain Metastasis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 施博仁;李亦宸;洪智煌 | zh_TW |
dc.contributor.oralexamcommittee | Po-Jen Shih;Yi-Chen Li;Chih-Huang Hung | en |
dc.subject.keyword | 肺癌腦轉移,細胞共培養,三維細胞球,幾丁聚醣,吉非替尼抗藥性,表皮生長因子受體, | zh_TW |
dc.subject.keyword | Lung cancer brain metastasis,Cell co-culture,Three-dimensional spheroids,Chitosan,Drug resistance of gefitinib,EGFR, | en |
dc.relation.page | 58 | - |
dc.identifier.doi | 10.6342/NTU202401524 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-05 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 醫學工程學系 | - |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 3.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。