請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92926
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂聖元 | zh_TW |
dc.contributor.advisor | Sheng-Yuan Liu | en |
dc.contributor.author | 陳韋安 | zh_TW |
dc.contributor.author | Wei-An Chen | en |
dc.date.accessioned | 2024-07-05T16:08:30Z | - |
dc.date.available | 2024-07-06 | - |
dc.date.copyright | 2024-07-05 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-06-28 | - |
dc.identifier.citation | Abe, D., Inoue, T., Inutsuka, S.-i., & Matsumoto, T. 2021, ApJ, 916, 83, doi: 10.3847/1538-4357/ac07a1
Alfaro, E. J., & Román-Zúñiga, C. G. 2018, MNRAS, 478, L110, doi: 10.1093/mnrasl/sly075 Allison, R. J., Goodwin, S. P., Parker, R. J., et al. 2009, MNRAS, 395, 1449, doi: 10.1111/j.1365-2966.2009.14508.x André, P., Di Francesco, J., Ward-Thompson, D., et al. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 27–51, doi: 10.2458/azu_uapress_9780816531240-ch002 André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102, doi: 10.1051/0004-6361/201014666 Arzoumanian, D., André, P., Könyves, V., et al. 2019, A&A, 621, A42, doi: 10.1051/0004-6361/201832725 Avison, A., Fuller, G. A., Frimpong, N. A., et al. 2023, MNRAS, 526, 2278, doi: 10.1093/mnras/stad2824 Balfour, S. K., Whitworth, A. P., Hubber, D. A., & Jaffa, S. E. 2015, MNRAS, 453, 2471, doi: 10.1093/mnras/stv1772 Barrow, J. D., Bhavsar, S. P., & Sonoda, D. H. 1985, MNRAS, 216, 17, doi: 10.1093/mnras/216.1.17 Beuther, H., Mottram, J. C., Ahmadi, A., et al. 2018, A&A, 617, A100, doi: 10.1051/0004-6361/201833021 Beuther, H., Gieser, C., Suri, S., et al. 2021, A&A, 649, A113, doi: 10.1051/0004-6361/202040106 Beuther, H., Gieser, C., Soler, J. D., et al. 2024, A&A, 682, A81, doi: 10.1051/0004-6361/202348117 Bonnell, I. A., & Bate, M. R. 2006, MNRAS, 370, 488, doi: 10.1111/j.1365-2966.2006.10495.x Camacho, V., Vázquez-Semadeni, E., Palau, A., & Zamora-Avilés, M. 2023, MNRAS, 523, 3376, doi: 10.1093/mnras/stad1581 Chen, C.-Y., & Ostriker, E. C. 2015, ApJ, 810, 126, doi: 10.1088/0004-637X/810/2/126 Chung, E. J., Lee, C. W., Kwon, W., Tafalla, M., & Kim, S. 2023, ApJ, 951, 68, doi: 10.3847/1538-4357/acd540 Chung, E. J., Lee, C. W., Kwon, W., et al. 2022, AJ, 164, 175, doi: 10.3847/1538-3881/ac8a43 Clarke, S. D., Jaffa, S. E., & Whitworth, A. P. 2022, MNRAS, 516, 2782, doi: 10.1093/mnras/stac2318 Clarke, S. D., Whitworth, A. P., Duarte-Cabral, A., & Hubber, D. A. 2017, MNRAS, 468, 2489, doi: 10.1093/mnras/stx637 Clarke, S. D., Williams, G. M., & Walch, S. 2020, MNRAS, 497, 4390, doi: 10.1093/mnras/staa2298 Colella, P. 1990, Journal of Computational Physics, 87, 171, doi: 10.1016/0021-9991(90)90233-Q Contreras, Y., Rathborne, J. M., Guzman, A., et al. 2017, MNRAS, 466, 340, doi: 10.1093/mnras/stw3110 Courant, R., Friedrichs, K., & Lewy, H. 1928, Mathematische Annalen, 100, 32, doi: 10.1007/BF01448839 Csengeri, T., Bontemps, S., Wyrowski, F., et al. 2017, A&A, 600, L10, doi: 10.1051/0004-6361/201629754 Dullemond, C. P., Juhasz, A., Pohl, A., et al. 2012, RADMC-3D: A multi-purpose radiative transfer tool, Astrophysics Source Code Library, record ascl:1202.015 Eswaraiah, C., Li, D., Furuya, R. S., et al. 2021, ApJL, 912, L27, doi: 10.3847/2041-8213/abeb1c Evans, C. R., & Hawley, J. F. 1988, ApJ, 332, 659, doi: 10.1086/166684 Falle, S. A. E. G. 1991, MNRAS, 250, 581, doi: 10.1093/mnras/250.3.581 Federrath, C., Banerjee, R., Clark, P. C., & Klessen, R. S. 2010, ApJ, 713, 269, doi: 10.1088/0004-637X/713/1/269 Frigo, M., & Johnson, S. 2005, Proceedings of the IEEE, 93, 216, doi: 10.1109/JPROC. 2004.840301 Ganguly, S., Walch, S., Clarke, S. D., & Seifried, D. 2024, MNRAS, 528, 3630, doi: 10.1093/mnras/stae032 Ganguly, S., Walch, S., Seifried, D., Clarke, S. D., & Weis, M. 2023, MNRAS, 525, 721, doi: 10.1093/mnras/stad2054 Gardiner, T. A., & Stone, J. M. 2008, Journal of Computational Physics, 227, 4123, doi: 10.1016/j.jcp.2007.12.017 Gómez, G. C., & Vázquez-Semadeni, E. 2014, ApJ, 791, 124, doi: 10.1088/0004-637X/ 791/2/124 Gu, Q.-L., Liu, T., Li, P. S., et al. 2024, ApJ, 963, 126, doi: 10.3847/1538-4357/ad1bc7 Guzmán, A. E., Sanhueza, P., Contreras, Y., et al. 2015, ApJ, 815, 130, doi: 10.1088/0004-637X/815/2/130 Hacar, A., Tafalla, M., & Alves, J. 2017, A&A, 606, A123, doi: 10.1051/0004-6361/201630348 Hacar, A., Tafalla, M., Forbrich, J., et al. 2018, A&A, 610, A77, doi: 10.1051/0004-6361/201731894 Hacar, A., Tafalla, M., Kauffmann, J., & Kovács, A. 2013, A&A, 554, A55, doi: 10.1051/0004-6361/201220090 Hanawa, T., Kudoh, T., & Tomisaka, K. 2017, ApJ, 848, 2, doi: 10.3847/1538-4357/aa8b6d Hennemann, M., Motte, F., Schneider, N., et al. 2012, A&A, 543, L3, doi: 10.1051/0004-6361/201219429 Hockney, R. W., & Eastwood, J. W. 1988, Computer simulation using particles Hodges, J. L. 1958, Arkiv for Matematik, 3, 469, doi: 10.1007/BF02589501 Inoue, T., & Fukui, Y. 2013, ApJL, 774, L31, doi: 10.1088/2041-8205/774/2/L31 Inoue, T., Hennebelle, P., Fukui, Y., et al. 2018, PASJ, 70, S53, doi: 10.1093/pasj/ psx089 Iwasaki, K., & Tomida, K. 2022, ApJ, 934, 174, doi: 10.3847/1538-4357/ac75cc Kendall, M. G. 1938, Biometrika, 30, 81, doi: 10.1093/biomet/30.1-2.81 Kirk, H., Myers, P. C., Bourke, T. L., et al. 2013, ApJ, 766, 115, doi: 10.1088/0004-637X/766/2/115 Koch, P. M., Tang, Y.-W., Ho, P. T. P., et al. 2022, ApJ, 940, 89, doi: 10.3847/1538-4357/ac96e3 Kumar, M. S. N., Arzoumanian, D., Men’shchikov, A., et al. 2022, A&A, 658, A114, doi: 10.1051/0004-6361/202140363 Li, S., Sanhueza, P., Zhang, Q., et al. 2020, ApJ, 903, 119, doi: 10.3847/1538-4357/abb81f Li, S., Sanhueza, P., Lu, X., et al. 2022, ApJ, 939, 102, doi: 10.3847/1538-4357/ac94d4 Li, S., Sanhueza, P., Zhang, Q., et al. 2023, ApJ, 949, 109, doi: 10.3847/1538-4357/acc58f Liu, J., Zhang, Q., Qiu, K., et al. 2020, ApJ, 895, 142, doi: 10.3847/1538-4357/ab9087 Lomax, O., Whitworth, A. P., & Hubber, D. A. 2015, MNRAS, 449, 662, doi: 10.1093/mnras/stv310 Masunaga, H., & Inutsuka, S.-i. 2000, ApJ, 531, 350, doi: 10.1086/308439 Masunaga, H., Miyama, S. M., & Inutsuka, S.-i. 1998, ApJ, 495, 346, doi: 10.1086/305281 McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell, 127 Miyoshi, T., & Kusano, K. 2005, Journal of Computational Physics, 208, 315, doi: 10.1016/j.jcp.2005.02.017 Molinari, S., Pezzuto, S., Cesaroni, R., et al. 2008, A&A, 481, 345, doi: 10.1051/0004-6361:20078661 Molinari, S., Baldeschi, A., Robitaille, T. P., et al. 2019, MNRAS, 486, 4508, doi: 10.1093/mnras/stz900 Morii, K., Sanhueza, P., Nakamura, F., et al. 2023, ApJ, 950, 148, doi: 10.3847/1538-4357/acccea Müller, E., & Steinmetz, M. 1995, Computer Physics Communications, 89, 45, doi: 10.1016/0010-4655(94)00185-5 Ossenkopf, V., & Henning, T. 1994, A&A, 291, 943 Palau, A., Ballesteros-Paredes, J., Vázquez-Semadeni, E., et al. 2015, MNRAS, 453, 3785, doi: 10.1093/mnras/stv1834 Palau, A., Zhang, Q., Girart, J. M., et al. 2021, ApJ, 912, 159, doi: 10.3847/1538-4357/abee1e Parker, R. J., & Goodwin, S. P. 2015, MNRAS, 449, 3381, doi: 10.1093/mnras/stv539 Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning Research, 12, 2825 Peretto, N., Fuller, G. A., André, P., et al. 2014, A&A, 561, A83, doi: 10.1051/0004-6361/201322172 Pineda, J. E., Arzoumanian, D., Andre, P., et al. 2023, in Astronomical Society of the Pacific Conference Series, Vol. 534, Protostars and Planets VII, ed. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 233, doi: 10.48550/arXiv.2205. 03935 Press, W. 2007, Numerical Recipes 3rd Edition: The Art of Scientific Computing, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press) Román-Zúñiga, C. G., Alfaro, E., Palau, A., et al. 2019, MNRAS, 489, 4429, doi: 10.1093/mnras/stz2355 Rosolowsky, E. W., Pineda, J. E., Kauffmann, J., & Goodman, A. A. 2008, ApJ, 679, 1338, doi: 10.1086/587685 Sabatini, G., Bovino, S., Sanhueza, P., et al. 2022, ApJ, 936, 80, doi: 10.3847/1538-4357/ac83aa Sanhueza, P., Jackson, J. M., Zhang, Q., et al. 2017, ApJ, 841, 97, doi: 10.3847/1538-4357/aa6ff8 Sanhueza, P., Contreras, Y., Wu, B., et al. 2019, ApJ, 886, 102, doi: 10.3847/1538-4357/ab45e9 Schive, H.-Y., ZuHone, J. A., Goldbaum, N. J., et al. 2018, MNRAS, 481, 4815, doi: 10.1093/mnras/sty2586 Scholz, F. W., & Stephens, M. A. 1987, Journal of the American Statistical Association, 82, 918, doi: 10.1080/01621459.1987.10478517 Shimajiri, Y., André, P., Ntormousi, E., et al. 2019, A&A, 632, A83, doi: 10.1051/0004-6361/201935689 Sousbie, T. 2011, MNRAS, 414, 350, doi: 10.1111/j.1365-2966.2011.18394.x Stone, J. M., & Gardiner, T. 2009, NewA, 14, 139, doi: 10.1016/j.newast.2008.06.003 Tafalla, M., & Hacar, A. 2015, A&A, 574, A104, doi: 10.1051/0004-6361/201424576 Tang, Y.-W., Koch, P. M., Peretto, N., et al. 2019, ApJ, 878, 10, doi: 10.3847/1538-4357/ab1484 Toro, E. 2009, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer Berlin Heidelberg) Traficante, A., Jones, B. M., Avison, A., et al. 2023, MNRAS, 520, 2306, doi: 10.1093/mnras/stad272 Truelove, J. K., Klein, R. I., McKee, C. F., et al. 1997, ApJL, 489, L179, doi: 10.1086/310975 van Leer, B. 2006, Communications in Computational Physics, 1, 192 Vázquez-Semadeni, E., Palau, A., Ballesteros-Paredes, J., Gómez, G. C., & Zamora-Avilés, M. 2019, MNRAS, 490, 3061, doi: 10.1093/mnras/stz2736 Vázquez-Semadeni, E., Zamora-Avilés, M., Galván-Madrid, R., & Forbrich, J. 2018, MNRAS, 479, 3254, doi: 10.1093/mnras/sty1586 Woodward, P., & Colella, P. 1984, Journal of Computational Physics, 54, 115, doi: 10.1016/0021-9991(84)90142-6 Xu, F., Wang, K., Liu, T., et al. 2024, ApJS, 270, 9, doi: 10.3847/1538-4365/acfee5 Yang, S., & Gobbert, M. K. 2009, Applied Mathematics Letters, 22, 325, doi: 10.1016/ j.aml.2008.03.028 Yuan, J., Li, J.-Z., Wu, Y., et al. 2018, ApJ, 852, 12, doi: 10.3847/1538-4357/aa9d40 Zhang, U.-H., Schive, H.-Y., & Chiueh, T. 2018, ApJS, 236, 50, doi: 10.3847/1538-4365/aac49e | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92926 | - |
dc.description.abstract | 作為高質量恆星前身的緻密核,它們通常形成於高密度的團塊中,並在空間上呈現出多樣化的排列。近年觀測產生的大量數據使得有效地量化這些排列顯得日益重要,而此舉也有利於將這些排列與團塊尺度的特性更有系統地連結。故此,我們引入「正列參數」以量化緻密核排列程度,並展現此參數能有效地辨別這些排列。我們將其應用於ASHES計畫的1.3毫米連續譜資料,發現其量化後數值結果符合人眼判別。此外,我們亦利用正列參數尋求其與團塊尺度之特性間的連結。而我們也更進一步地使用數值模擬來探討緻密核排列與更大尺度結構的形成以及團塊演化的關係性。以結果而言,觀測數據及模擬資料僅表明存在弱相關性,這意味著緻密核的排列在團塊演化過程中可能有著動態且局域的特性。 | zh_TW |
dc.description.abstract | Dense cores, precursors to high-mass stars, form inside the dense clumps and spatially exhibit diverse degrees of alignments. The large data from recent observations necessitate an efficient method to quantify core alignment and systematically relate it to clump-scale properties. Thus, we introduce the alignment parameter to quantify core alignment, and show that it can effectively distinguish between fragmentation modes. We apply it to 1.3 mm dust continuum data from the ASHES survey, demonstrating this parameter is consistent with visual classification. Nevertheless, we conduct correlations between clump-scale parameters and alignment parameters to assess their relation. Also, numerical simulations are used to check for the relation between the core alignment and structure formation, and clump evolution. Both observations and simulations suggest a weak correlation, implying core alignment might be a dynamic and local feature within clump fragmentation. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-05T16:08:30Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-05T16:08:30Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xvii Denotation xix Chapter 1 Introduction 1 Chapter 2 Developing the Alignment Parameter 5 2.1 ASHES Observation 5 2.2 Structure Identification 6 2.3 Clump Size 7 2.4 Alignment Parameter 9 2.5 Unweighted Alignment Parameter 11 2.6 Experiments with the Alignment Parameter 12 2.6.1 Simple Arrangements 12 2.6.2 Random Arrangements 13 2.6.3 The Behavior of Alignment Parameter 15 Chapter 3 Simulation 21 3.1 Numerical Methods 21 3.1.1 Discretization 24 3.1.2 Divergence-free Constrain 25 3.1.3 MHD Schemes 27 3.1.4 Self-gravity 29 3.1.5 Sink Particle 30 3.1.6 Equation of State 35 3.2 Initial Conditions 36 3.3 Post-Processing 38 3.3.1 Clump Identification 38 3.3.2 Synthetic Images 41 3.3.3 Aligned Parameter for Synthetic Images 42 3.3.4 Clump Parameters 43 3.3.5 Trace the Evolution 44 Chapter 4 Results 47 4.1 Alignment Parameters on ASHES Samples 47 4.1.1 The Choice of Structure-Finder Criteria 49 4.1.2 Connected Structure 51 4.2 Core Alignment Verse Clump Parameters 52 4.2.1 Intrinsic Properties 52 4.2.2 Clump Evolution 58 4.2.3 Segregation 60 4.2.4 Large-Scale Geometry 62 4.3 Overall Structures in the Post-shock Region in Simulation 63 4.4 Evolutionary Sequence 66 4.5 AL and Clump Parameters in Simulation 73 Chapter 5 Discussion 81 5.1 AL in Observation 81 5.1.1 The Sensitivity of AL on Identified Structures 81 5.1.2 Core Formation and Alignment 82 5.1.3 No Clear Difference Due to Core Alignment 84 5.1.4 The Observation Bias 90 5.2 AL in Simulation 92 5.2.1 No Monotonic Evolution in AL 92 5.2.2 Forming in Filament or Hub 102 Chapter 6 Conclusion 111 References 115 Appendix A - Identified Cores in ASHES 125 A.1 Images 125 Appendix B - Structure Evolution in Simulation 133 B.1 Images 133 | - |
dc.language.iso | en | - |
dc.title | 正列參數:恆星形成區域團塊之碎塊排列的量化 | zh_TW |
dc.title | Alignment Parameter: Quantify Dense Core Alignment in Star Formation Regions | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 湯雅雯 | zh_TW |
dc.contributor.coadvisor | Ya-Wen Tang | en |
dc.contributor.oralexamcommittee | 平野尚美;何英宏 | zh_TW |
dc.contributor.oralexamcommittee | Naomi Hirano;Daniel Harsono | en |
dc.subject.keyword | 恆星形成,恆星形成區域,星際介質,原星團,磁流體動力模擬, | zh_TW |
dc.subject.keyword | Star formation,Star forming regions,Interstellar medium,Protoclusters,Magnetohydrodynamical simulations, | en |
dc.relation.page | 148 | - |
dc.identifier.doi | 10.6342/NTU202401202 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-06-28 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 天文物理研究所 | - |
顯示於系所單位: | 天文物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 40.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。