Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92909
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭瑞祥zh_TW
dc.contributor.advisorRuey-Shan Guoen
dc.contributor.author王子騫zh_TW
dc.contributor.authorTzu-Chien Wangen
dc.date.accessioned2024-07-04T16:09:12Z-
dc.date.available2024-07-05-
dc.date.copyright2024-07-04-
dc.date.issued2024-
dc.date.submitted2024-07-02-
dc.identifier.citation1. Abbasimehr, H., and Shabani, M. (2021). A new methodology for customer behavior analysis using time series clustering: A case study on a bank’s customers. Kybernetes, 50(2), 221-242.
2. AboElHamd, E., Shamma, H. M., and Saleh, M. (2020). Dynamic programming models for maximizing customer lifetime value: An overview. In Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 1 (pp. 419-445). Springer International Publishing.
3. Akaka, M. A., and Vargo, S. L. (2014). Technology as an operant resource in service (eco) systems. Information Systems and e-business Management, 12, 367-384.
4. Anderl, E., Becker, I., Von Wangenheim, F., and Schumann, J. H. (2016). Mapping the customer journey: Lessons learned from graph-based online attribution modeling. International Journal of Research in Marketing, 33(3), 457-474.
5. Anderl, E., Schumann, J. H., and Kunz, W. (2016). Helping firms reduce complexity in multichannel online data: A new taxonomy-based approach for customer journeys. Journal of Retailing, 92(2), 185-203.
6. Arthur, D. Y., Harris, E., and Annan, J. (2012). Principal Component Analysis of Customer Churns in Ghanaian Telecommunication Industry. American International Journal of Contemporary Research, 2(12).
7. Barwitz, N.,and Maas, P. (2018). Understanding the omnichannel customer journey: determinants of interaction choice. Journal of interactive marketing, 43(1), 116-133.
8. Bauer, J., and Jannach, D. (2021). Improved customer lifetime value prediction with sequence-to-sequence learning and feature-based models. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(5), 1-37.
9. Berendes, C. I., Bartelheimer, C., Betzing, J. H., and Beverungen, D. (2018). Data-driven customer journey mapping in local high streets: A domain-specific modeling language.
10. Birant, D. (2011). Data mining using RFM analysis. In Knowledge-oriented applications in data mining. IntechOpen.
11. Boulding, W., and Kirmani, A. (1993). A consumer-side experimental examination of signaling theory: do consumers perceive warranties as signals of quality?. Journal of consumer research, 20(1), 111-123.
12. Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
13. Bui, M. T., Jeng, D. J. F., and Lin, C. (2015). The importance of attribution: connecting online travel communities with online travel agents. Cornell Hospitality Quarterly, 56(3), 285-297.
14. Cha, J. E., Kim, S., and Lee, Y. (2009). Application of multidimensional scaling for marketing-mix modification: A case study on mobile phone category. Expert Systems with Applications, 36(3), 4884-4890.
15. Chang, H. H., Jeng, D. J. F., and Hamid, M. R. A. (2013). Conceptualising consumers’ word-of-mouth behaviour intention: evidence from a university education services in Malaysia. Service Business, 7, 17-35.
16. Chen, L., and Homem-de-Mello, T. (2010). Re-solving stochastic programming models for airline revenue management. Annals of Operations Research, 177(1), 91-114.
17. Chen, P. P., Guitart, A., del Río, A. F., and Periánez, A. (2018, December). Customer lifetime value in video games using deep learning and parametric models. In 2018 IEEE international conference on big data (big data) (pp. 2134-2140). IEEE.
18. Colicev, A., Kumar, A., and O'Connor, P. (2019). Modeling the relationship between firm and user generated content and the stages of the marketing funnel. International Journal of Research in Marketing, 36(1), 100-116.
19. Covington, P., Adams, J., and Sargin, E. (2016, September). Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM conference on recommender systems (pp. 191-198).
20. Crosier, A., and Handford, A. (2012). Customer journey mapping as an advocacy tool for disabled people: A case study. Social Marketing Quarterly, 18(1), 67-76.
21. De Haan, E., Wiesel, T., and Pauwels, K. (2016). The effectiveness of different forms of online advertising for purchase conversion in a multiple-channel attribution framework. International journal of research in marketing, 33(3), 491-507.
22. De Keyser, A., Schepers, J., and Konuş, U. (2015). Multichannel customer segmentation: Does the after-sales channel matter? A replication and extension. International Journal of Research in Marketing, 32(4), 453-456.
23. Dobson, G., and Kalish, S. (1993). Heuristics for pricing and positioning a product-line using conjoint and cost data. Management Science, 39(2), 160-175.
24. Dodds, W. B., Monroe, K. B., and Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of marketing research, 28(3), 307-319.
25. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE transactions on systems, man, and cybernetics, part b (cybernetics), 26(1), 29-41.
26. Edelman, D. C., and Singer, M. (2015). Competing on customer journeys. Harvard business review, 93(11), 88-100.
27. Edelman, D. C., and Singer, M. (2015). Competing on customer journeys. Harvard business review, 93(11), 88-100.
28. Edvardsson, B., Gustafsson, A., and Roos, I. (2005). Service portraits in service research: a critical review. International journal of service industry management, 16(1), 107-121.
29. Ellamil, M., Fox, K. C., Dixon, M. L., Pritchard, S., Todd, R. M., Thompson, E., and Christoff, K. (2016). Dynamics of neural recruitment surrounding the spontaneous arising of thoughts in experienced mindfulness practitioners. Neuroimage, 136, 186-196.
30. Fader, P. S., Hardie, B. G., and Lee, K. L. (2005). RFM and CLV: Using iso-value curves for customer base analysis. Journal of marketing research, 42(4), 415-430.
31. Følstad, A., and Kvale, K. (2018). Customer journeys: a systematic literature review. Journal of service theory and practice, 28(2), 196-227.
32. Foster, M., Whittle, S., Smith, S., and Hyde, P. (1991). Improving the service quality chain. Managing Service Quality: An International Journal, 1(1), 41-46.
33. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley google schola, 2, 17-26.
34. Grewal, D., and Roggeveen, A. L. (2020). Understanding retail experiences and customer journey management. Journal of Retailing, 96(1), 3-8.
35. Gutman, J. (1982). A means-end chain model based on consumer categorization processes. Journal of marketing, 46(2), 60-72.
36. Habbat, N., Anoun, H., and Hassouni, L. (2022). Combination of GRU and CNN deep learning models for sentiment analysis on French customer reviews using XLNet model. IEEE Engineering Management Review, 51(1), 41-51.
37. Han, S. C., Lim, T., Long, S., Burgstaller, B., and Poon, J. (2021, October). Glocal-k: Global and local kernels for recommender systems. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (pp. 3063-3067).
38. He, B., Shi, Y., Wan, Q., and Zhao, X. (2014). Prediction of customer attrition of commercial banks based on SVM model. Procedia computer science, 31, 423-430.
39. Heuchert, M. (2019, July). Conceptual modeling meets customer journey mapping: Structuring a tool for service innovation. In 2019 IEEE 21st Conference on Business Informatics (CBI) (Vol. 1, pp. 531-540). IEEE.
40. Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
41. Huang, C. Y., Shen, Y. C., Chiang, I. P., and Lin, C. S. (2007). Characterizing Web users' online information behavior. Journal of the American society for information science and technology, 58(13), 1988-1997.
42. Hübner, A., Hense, J., and Dethlefs, C. (2022). The revival of retail stores via omnichannel operations: A literature review and research framework. European Journal of Operational Research, 302(3), 799-818.
43. Jain, P. K., Saravanan, V., and Pamula, R. (2021). A hybrid CNN-LSTM: A deep learning approach for consumer sentiment analysis using qualitative user-generated contents. Transactions on Asian and Low-Resource Language Information Processing, 20(5), 1-15.
44. Jaiswal, E. S. (2012). A case study on quality function deployment (QFD). IOSR Journal of Mechanical and Civil Engineering, 3(6), 27-35.
45. Jasin, S., and Kumar, S. (2012). A re-solving heuristic with bounded revenue loss for network revenue management with customer choice. Mathematics of Operations Research, 37(2), 313-345.
46. Jayachandran, S., Sharma, S., Kaufman, P., and Raman, P. (2005). The role of relational information processes and technology use in customer relationship management. Journal of marketing, 69(4), 177-192.
47. Jiang, Y., Liu, Y., Shang, J., Yildirim, P., and Zhang, Q. (2018). Optimizing online recurring promotions for dual-channel retailers: Segmented markets with multiple objectives. European Journal of Operational Research, 267(2), 612-627.
48. Jiao, J., Zhang, Y., and Wang, Y. (2007). A generic genetic algorithm for product family design. Journal of Intelligent Manufacturing, 18, 233-247.
49. Jimenez, D. Z., Lim, V., Cheok, L., and Ng, H. (2018). Unlocking the economic impact of digital transformation in Asia Pacific. IDC White Paper.
50. Kao, L. J., Chiu, C. C., Wang, H. J., and Ko, C. Y. (2021). Prediction of remaining time on site for e‐commerce users: A SOM and long short‐term memory study. Journal of Forecasting, 40(7), 1274-1290.
51. Karmarkar, N. (1984, December). A new polynomial-time algorithm for linear programming. In Proceedings of the sixteenth annual ACM symposium on Theory of computing (pp. 302-311).
52. Katz, M. L., and Shapiro, C. (1986). Product compatibility choice in a market with technological progress. Oxford Economic Papers, 38, 146-165.
53. Keller, K. L., and Kotler, P. (2015). Holistic marketing: a broad, integrated perspective to marketing management. In Does marketing need reform?: Fresh perspectives on the future (pp. 308-313). Routledge.
54. Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
55. Ko, Y. H., Hsu, P. Y., Cheng, M. S., Jheng, Y. R., and Luo, Z. C. (2019). Customer retention prediction with CNN. In Data Mining and Big Data: 4th International Conference, DMBD 2019, Chiang Mai, Thailand, July 26–30, 2019, Proceedings 4 (pp. 104-113). Springer Singapore.
56. Koch, C., Lindenbeck, B., and Olbrich, R. (2023). Dynamic customer journey analysis and its advertising impact. Journal of Strategic Marketing, 1-20.
57. Kohli, R., and Krishnamurti, R. (1987). A heuristic approach to product design. Management Science, 1523-1533.
58. Kuo, R. J., and Cheng, H. R. (2022). A content-based recommender system with consideration of repeat purchase behavior. Applied Soft Computing, 127, 109361.
59. Kuo, R. J., Alfareza, M. N., and Nguyen, T. P. Q. (2023). Genetic based density peak possibilistic fuzzy c-means algorithms to cluster analysis-a case study on customer segmentation. Engineering Science and Technology, an International Journal, 47, 101525.
60. Lamrhari, S., El Ghazi, H., Oubrich, M., and El Faker, A. (2022). A social CRM analytic framework for improving customer retention, acquisition, and conversion. Technological Forecasting and Social Change, 174, 121275.
61. Larson, J. S., Bradlow, E. T., and Fader, P. S. (2005). An exploratory look at supermarket shopping paths. International Journal of research in Marketing, 22(4), 395-414.
62. Lee, W. J., and Kim, D. (1993). Optimal and heuristic decision strategies for integrated production and marketing planning. Decision Sciences, 24(6), 1203-1214.
63. Lemon, K. N., and Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of marketing, 80(6), 69-96.
64. Liu, Y., Soroka, A., Han, L., Jian, J., and Tang, M. (2020). Cloud-based big data analytics for customer insight-driven design innovation in SMEs. International Journal of Information Management, 51, 102034.
65. Liu, Y., Soroka, A., Han, L., Jian, J., and Tang, M. (2020). Cloud-based big data analytics for customer insight-driven design innovation in SMEs. International Journal of Information Management, 51, 102034.
66. Machchhar, R. J., Toller, C. N. K., Bertoni, A., and Bertoni, M. (2022). Data-driven value creation in Smart Product-Service System design: State-of-the-art and research directions. Computers in Industry, 137, 103606.
67. Mak, H. Y., and Max Shen, Z. J. (2021). When triple‐A supply chains meet digitalization: The case of JD. com's C2M model. Production and Operations Management, 30(3), 656-665.
68. Marmol, M., Goyal, A., Copado-Mendez, P. J., Panadero, J., and Juan, A. A. (2021). Maximizing customers' lifetime value using limited marketing resources. Marketing Intelligence and Planning, 39(8), 1058-1072.
69. Mithas, S., Krishnan, M. S., and Fornell, C. (2005). Why do customer relationship management applications affect customer satisfaction?. Journal of marketing, 69(4), 201-209.
70. Mzoughia, M. B., and Limam, M. (2015). An improved customer lifetime value model based on Markov chain. Applied stochastic models in business and industry, 31(4), 528-535.
71. Nair, S. K., Thakur, L. S., and Wen, K. W. (1995). Near optimal solutions for product line design and selection: Beam search heuristics. Management Science, 41(5), 767-785.
72. Neslin, S. A. (2022). The omnichannel continuum: Integrating online and offline channels along the customer journey. Journal of retailing, 98(1), 111-132.
73. Niu, Z., Zhong, G., and Yu, H. (2021). A review on the attention mechanism of deep learning. Neurocomputing, 452, 48-62.
74. Oh, D., Yoo, M. M., and Lee, Y. (2019). A holistic view of the service experience at coffee franchises: A cross-cultural study. International Journal of Hospitality Management, 82, 68-81.
75. Papadimitriou, C. H. (1981). On the complexity of integer programming. Journal of the ACM (JACM), 28(4), 765-768.
76. Peter, A. J., and Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environment international, 31(4), 493-501.
77. Peterson, R. A., and Merino, M. C. (2003). Consumer information search behavior and the Internet. Psychology and Marketing, 20(2), 99-121.
78. Pöppel, J., Finsterwalder, J., and Laycock, R. A. (2018). Developing a film-based service experience blueprinting technique. Journal of Business Research, 85, 459-466.
79. Purohit, D., and Srivastava, J. (2001). Effect of manufacturer reputation, retailer reputation, and product warranty on consumer judgments of product quality: A cue diagnosticity framework. Journal of consumer psychology, 10(3), 123-134.
80. Rao, A. R., and Monroe, K. B. (1988). The moderating effect of prior knowledge on cue utilization in product evaluations. Journal of consumer research, 15(2), 253-264.
81. Reinartz, W., Krafft, M., and Hoyer, W. D. (2004). The customer relationship management process: Its measurement and impact on performance. Journal of marketing research, 41(3), 293-305.
82. Richardson, P. S., Dick, A. S., and Jain, A. K. (1994). Extrinsic and intrinsic cue effects on perceptions of store brand quality. Journal of marketing, 58(4), 28-36.
83. Robin, D., and Hugues, B. (2016). Collaborative filtering with recurrent neural networks. Computer Science, 1-8.
84. Sağlam, B., Salman, F. S., Sayın, S., and Türkay, M. (2006). A mixed-integer programming approach to the clustering problem with an application in customer segmentation. European Journal of Operational Research, 173(3), 866-879.
85. Suguna, R., Devi, M. S., and Mathew, R. M. (2019). Customer segment prognostic system by machine learning using principal component and linear discriminant analysis. International Journal of Recent Technology and Engineering, 8(2), 6198-6203.
86. Sun, C., Adamopoulos, P., Ghose, A., and Luo, X. (2022). Predicting stages in omnichannel path to purchase: A deep learning model. Information Systems Research, 33(2), 429-445.
87. Tabianan, K., Velu, S., and Ravi, V. (2022). K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability, 14(12), 7243.
88. Tarnowska, K. A., and Ras, Z. (2021). NLP-based customer loyalty improvement recommender system (CLIRS2). Big Data and Cognitive Computing, 5(1), 4.
89. Valentini, S., Montaguti, E., and Neslin, S. A. (2011). Decision process evolution in customer channel choice. Journal of Marketing, 75(6), 72-86.
90. Wang, C. H., and Chen, J. N. (2012). Using quality function deployment for collaborative product design and optimal selection of module mix. Computers and Industrial Engineering, 63(4), 1030-1037.
91. Wang, C. H., and Chin, H. T. (2017). Integrating affective features with engineering features to seek the optimal product varieties with respect to the niche segments. Advanced Engineering Informatics, 33, 350-359.
92. Wang, Y. H., Lee, C. H., and Trappey, A. J. (2017). Service design blueprint approach incorporating TRIZ and service QFD for a meal ordering system: A case study. Computers and Industrial Engineering, 107, 388-400.
93. Wigand, R. T. (1997). Electronic commerce: Definition, theory, and context. The information society, 13(1), 1-16.
94. Wijaya, I. W. R. (2022). Development of conceptual model to increase customer interest using recommendation system in e-commerce. Procedia Computer Science, 197, 727-733.
95. Wübben, M., and Wangenheim, F. V. (2008). Instant customer base analysis: Managerial heuristics often “get it right”. Journal of Marketing, 72(3), 82-93.
96. Zhang, R., Zheng, F., and Min, W. (2018). Sequential behavioral data processing using deep learning and the Markov transition field in online fraud detection. arXiv preprint arXiv:1808.05329.
97. Zhang, Y., and Gelb, B. D. (1996). Matching advertising appeals to culture: The influence of products' use conditions. Journal of advertising, 25(3), 29-46.
98. Zhang, Y., Dai, H., Xu, C., Feng, J., Wang, T., Bian, J., ... and Liu, T. Y. (2014, June). Sequential click prediction for sponsored search with recurrent neural networks. In Proceedings of the AAAI conference on artificial intelligence (Vol. 28, No. 1).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92909-
dc.description.abstract本研究針對顧客旅程管理、最佳化顧客購買週期三階段規劃、「顧客-通路-產品」理論與變數探討、精準行銷模式建構、顧客終身價值評估、多通路價值最佳化、精準研發模式建構、產品(工業)效用評估及產品規格推薦等實證研究,提出了一個「整合性機器學習與啟發式演算法最佳化技術」的顧客洞察分析系統。該系統以企業真實工作場景和數據為基礎,針對金融業和有終端消費性產品之製造業進行電子商務場域驗證的實證研究。本研究強調的是實務應用,而非方法論的突破,透過應用過往文獻中顧客旅程(Customer Journey)和新產品開發流程(New Product Development)的理論觀點,提出一個整合性分析框架,驗證兩個研究案例,並補足文獻中處理動態數據和最佳化企業資源配置分析方法之缺口。
第一項研究的驗證結果顯示,通過整合分析台灣金融保險行業的多種電子商務顧客數據,將顧客旅程購買週期三階段的動態分析納入現有的顧客價值估計模型,分析各種類型之線上通路的顧客通路互動、點擊行為數據,確實可以最佳化顧客終身價值,同時降低企業的整體轉換成本,並可更深入地了解顧客群體、購買行為、通路接觸點等對電子商務轉換的影響。研究框架涵蓋了各種技術,如集群分析、機器學習、深度學習、整數規劃與二進制差分進化法,目標變數包括點擊、立即購買、轉換收益與顧客終身價值。資料量約為140萬次流量訪問、110萬用戶和56,000筆商務交易的通路互動、點擊、轉換等分析數據。
第二項研究的驗證結果顯示,通過整合自然語言處理技術中的潛在狄利克雷分配主題分析及梯度提升決策樹技術,可以準確地預測亞馬遜消費者評分。並透過與製造公司合作,提出了一個數據驅動的產品服務系統,通過引入品質機能展開程序,根據研發流程自動產生顧客需求與功能重要性排序、顧客需求與產品功能對應之主題特徵矩陣,以及最佳化產品規格推薦,使企業能夠即時識別關鍵研發規格,快速展開新產品開發規劃,藉以支持顧客驅動製造(C2M)商業模式。研究資料量包括從2021年1月到2022年8月的76個產品類別中3,492,632條產品評論觀察記錄,以及來自亞馬遜運營商的銷售數據。研究整合了結構化和半結構化數據,並使用LDA和LightGBM模型進行分析。為了確保模型的準確性,建立了六項評估指標,並在製造應用中進行了概念驗證(POC)。
藉由所提供的多通路顧客價值最佳化解決方案與最佳化產品規格推薦解決方案,分別解決了金控公司數位行銷部門常見的營運管理問題(如顧客價值預測、會員經營管理、行銷通路自動配置、通路資源管理準則)以及製造公司研發部門常見的產品研發問題(如顧客需求分析、產品功能模組設計、新產品規格推薦、產品研發管理準則),對企業在系統化管理顧客購買週期、最佳化顧客旅程管理及產品創新與敏捷開發方面皆有實質性的幫助。機器學習預測和啟發式最佳化技術的整合,提高了動態數據分析和強化企業資源分配的能力。同時,顧客洞察分析系統的分析框架為企業系統提供了數值數據、非結構化分析和自動化分析能力。這為管理科學方法在電子商務研究領域的實務運用提供了參考,該數據分析框架適用於產業中的電子商務部門。
zh_TW
dc.description.abstractThis study focuses on customer journey management, three-stage planning for optimizing the customer purchase cycle, the exploration of the "customer-channel-product" theory and variables, the construction of precision marketing models, customer lifetime value assessment, multi-channel value optimization, precision R&D models, product (industrial) utility evaluation, and product specification recommendations. It proposes a customer insights analysis system that integrates machine learning and heuristic optimization techniques. Based on real-world enterprise scenarios and data, this system is validated through empirical research in the e-commerce domains of the financial industry and manufacturing industries with end-consumer products. This research emphasizes practical applications rather than methodological breakthroughs by applying theoretical perspectives from previous literature on customer journey and new product development processes. It proposes an integrated analytical framework, verifies two research cases, and addresses gaps in the literature concerning dynamic data handling and enterprise resource optimization analysis methods.
The validation results of the first study show that by integrating and analyzing various e-commerce customer data from the Taiwanese financial insurance industry, incorporating dynamic analysis of the three-stage customer purchase cycle into existing customer value estimation models, and analyzing customer interactions and click behavior data across various online channels, customer lifetime value can indeed be optimized while reducing overall conversion costs for enterprises. Additionally, it provides deeper insights into customer groups, purchase behavior, and the impact of channel touchpoints on e-commerce conversion. The research framework encompasses various techniques such as cluster analysis, machine learning, deep learning, integer programming, and binary differential evolution, targeting variables including clicks, immediate purchases, conversion revenue, and customer lifetime value. The dataset includes approximately 1.4 million traffic visits, 1.1 million users, and 56,000 business transaction interactions, clicks, and conversion data.
The validation results of the second study demonstrate that by integrating Latent Dirichlet Allocation (LDA) topic analysis from natural language processing technology with gradient boosting decision tree techniques, Amazon consumer ratings can be accurately predicted. By collaborating with manufacturing companies, a data-driven product-service system is proposed. This system, through the introduction of the Quality Function Deployment (QFD) process, automatically generates customer needs and function importance rankings, customer needs and product function correspondence topic feature matrices, and optimized product specification recommendations. This enables enterprises to promptly identify key R&D specifications and quickly initiate new product development planning, thereby supporting customer-driven manufacturing (C2M) business models. The research data includes 3,492,632 product review observation records from 76 product categories spanning from January 2021 to August 2022, along with sales data from Amazon operators. The study integrates structured and semi-structured data and employs LDA and LightGBM models for analysis. To ensure model accuracy, six evaluation metrics were established, and a proof of concept (POC) was conducted in manufacturing applications.
By providing multi-channel customer value optimization solutions and optimized product specification recommendation solutions, the study addresses common operational management issues in the digital marketing departments of financial holding companies (such as customer value prediction, member management, marketing channel auto-configuration, and channel resource management guidelines) and common product development issues in manufacturing R&D departments (such as customer needs analysis, product function module design, new product specification recommendations, and product R&D management guidelines). This has substantial benefits for enterprises in the systematic management of customer purchase cycles, optimized customer journey management, and product innovation and agile development. The integration of machine learning prediction and heuristic optimization techniques enhances dynamic data analysis and strengthens enterprise resource allocation capabilities. Simultaneously, the analytical framework for customer insights systems provides numerical data, unstructured analysis, and automated analytical capabilities for enterprise systems. This offers a reference for the practical application of management science methods in the field of e-commerce research, and the data analysis framework is applicable to e-commerce departments in various industries.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-04T16:09:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-04T16:09:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
謝辭 II
中文摘要 III
英文摘要 V
目次 VIII
表次 XI
圖次 XIII
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 1
第三節 研究目的 3
第四節 論文結構 4
第二章 文獻探討 6
第一節 顧客旅程研究 6
第二節 顧客購買週期三階段模式 10
第三節 顧客通路/目標顧客/產品屬性架構之研究 16
第四節 多維度轉換問題之解決方法 21
第五節 預測問題之解決方法 26
第六節 最佳化問題之解決方法 35
第七節 文獻回顧小結 40
第三章 研究架構 42
第一節 顧客購買週期三階段理論化模型 43
第二節 顧客購買週期三階段分析架構與說明 44
第三節 研究一分析模式建構與說明 50
第四節 研究二分析模式建構與說明 58
第四章 研究一:多通路顧客價值最佳化求解 64
第一節 研究案例說明 65
第二節 多通路顧客價值分析模式之集群分析 70
第三節 多通路顧客價值分析模式之機器學習分析 72
第四節 多通路顧客價值分析模式之最佳化模式計算 75
第五節 多通路顧客價值分析模式之大型規劃求解 79
第六節 通路資源配置法則 81
第五章 研究二:最佳化產品規格推薦求解 83
第一節 研究案例說明 83
第二節 最佳化產品規格分析模式之主題分析 87
第三節 最佳化產品規格分析模式之機器學習分析 90
第四節 最佳化產品規格分析模式之最佳化模式計算 93
第五節 最佳化產品規格分析模式之系統推薦架構 95
第六節 產品研發2X2矩陣 97
第六章 研究結論與建議 100
第一節 研究結論與貢獻 100
第二節 管理意涵 101
第三節 研究限制與未來方向 103
參考文獻 104
-
dc.language.isozh_TW-
dc.title整合機器學習與啟發式技術建構顧客洞察分析架構之量化研究zh_TW
dc.titleQuantitative Research on Integrating Machine Learning and Heuristic Techniques to Construct a Customer Insight Analysis Frameworken
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor陳家麟zh_TW
dc.contributor.coadvisorChialin Chenen
dc.contributor.oralexamcommittee郭人介;王志軒;鄭至甫;孔令傑zh_TW
dc.contributor.oralexamcommitteeRen-Jieh Kuo;Chih-Hsuan Wang;Don Jyh-Fu Jeng;Ling-Chieh Kungen
dc.subject.keyword數據驅動商業模式,顧客旅程三階段購買週期,機器學習,最佳化分析,自然語意分析,zh_TW
dc.subject.keywordData-Driven Business Models,Customer purchase journey,Machine learning,Optimization analysis,Natural language processing,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202401289-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-03-
dc.contributor.author-college管理學院-
dc.contributor.author-dept商學研究所-
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.87 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved