請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92898
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉如熹 | zh_TW |
dc.contributor.advisor | Ru-Shi Liu | en |
dc.contributor.author | 黃文澤 | zh_TW |
dc.contributor.author | Wen-Tse Huang | en |
dc.date.accessioned | 2024-07-03T16:10:51Z | - |
dc.date.available | 2024-07-04 | - |
dc.date.copyright | 2024-07-03 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-06-25 | - |
dc.identifier.citation | [1] Chen, Y.; Wang, S.; Zhang, F. Near-Infrared Luminescence High-Contrast In Vivo Biomedical Imaging. Nat. Rev. Bioeng. 2023, 1, 60–78.
[2] Yun, S. H.; Kwok, S. J. Light in Diagnosis, Therapy and Surgery. Nat. Biomed. Eng. 2017, 1, 0008. [3] Vasilopoulou, M.; Fakharuddin, A.; García de Arquer, F. P.; Georgiadou, D. G.; Kim, H.; Mohd Yusoff, A. R. b.; Gao, F.; Nazeeruddin, M. K.; Bolink, H. J.; Sargent, E. H. Advances in Solution-Processed Near-Infrared Light-Emitting Diodes. Nat. Photonics 2021, 15, 656–669. [4] Barr, E. S. Historical Survey of the Early Development of the Infrared Spectral Region. Am. J. Phys. 1960, 28, 42–54. [5] Zampetti, A.; Minotto, A.; Cacialli, F. Near‐Infrared (NIR) Organic Light‐Emitting Diodes (OLEDs): Challenges and Opportunities. Adv. Funct. Mater. 2019, 29, 1807623. [6] Feng, Z.; Tang, T.; Wu, T.; Yu, X.; Zhang, Y.; Wang, M.; Zheng, J.; Ying, Y.; Chen, S.; Zhou, J. Perfecting and Extending the Near-Infrared Imaging Window. Light Sci. Appl. 2021, 10, 197. [7] Balocco, C.; Mercatelli, L.; Azzali, N.; Meucci, M.; Grazzini, G. Experimental Transmittance of Polyethylene Films in the Solar and Infrared Wavelengths. Sol. Energy 2018, 165, 199–205. [8] Chang, Y.-H.; Ou, M.-D.; Wu, C.-J. Analysis of Tunable Transmission Properties in Photonic Crystals Containing Doped Semiconductor. Opt. Commun. 2014, 321, 167–171. [9] Rajendran, V.; Chang, H.; Liu, R. S. Recent Progress on Broadband Near-Infrared Phosphors-Converted Light Emitting Diodes for Future Miniature Spectrometers. Opt. Mater.: X 2019, 1, 100011. [10] Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y. Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chem. Rev. 2015, 115, 12633–12665. [11] Wu, X.; Li, J.; Yao, L.; Xu, Z. Auto-Sorting Commonly Recovered Plastics from Waste Household Appliances and Electronics Using Near-Infrared Spectroscopy. J. Clean. Prod. 2020, 246, 118732. [12] Aouadi, B.; Zaukuu, J.-L. Z.; Vitális, F.; Bodor, Z.; Fehér, O.; Gillay, Z.; Bazar, G.; Kovacs, Z. Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue—Critical Overview. Sensors 2020, 20, 5479. [13] Guan, Q.; Dai, Y.; Yang, Y.; Bi, X.; Wen, Z.; Pan, Y. Near-Infrared Irradiation Induced Remote and Efficient Self-Healable Triboelectric Nanogenerator for Potential Implantable Electronics. Nano Energy 2018, 51, 333–339. [14] Nie, F. M.; An, C. H.; Cao, D. F.; Liu, J.; Zhou, Y. F.; Lu, Y. G.; Ma, Z.; Pan, L.; Li, Y. S. Ru (II) Catalyst Enables Dynamic Dual‐Cross‐Linked Elastomers with Near‐Infrared Self‐Healing toward Flexible Electronics. Adv. Funct. Mater. 2022, 32, 2110616. [15] Kasi, V.; Zareei, A.; Gopalakrishnan, S.; Alcaraz, A. M.; Joshi, S.; Arfaei, B.; Rahimi, R. Flexible Hybrid Electronics via Near‐Infrared Radiation‐Assisted Soldering of Surface Mount Devices on Screen Printed Circuits. Adv. Electron. Mater. 2023, 2201012. [16] Shen, F.; Wu, Q.; Liu, P.; Jiang, X.; Fang, Y.; Cao, C. Detection of Aspergillus spp. Contamination Levels in Peanuts by Near Infrared Spectroscopy and Electronic Nose. Food Control 2018, 93, 1–8. [17] Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 nm. Nanoscale Horiz. 2016, 1, 168–184. [18] He, S.; Song, J.; Qu, J.; Cheng, Z. Crucial Breakthrough of Second Near-Infrared Biological Window Fluorophores: Design and Synthesis toward Multimodal Imaging and Theranostics. Chem. Soc. Rev. 2018, 47, 4258–4278. [19] Huang, W. T.; Rajendran, V.; Chan, M. H.; Hsiao, M.; Chang, H.; Liu, R. S. Near‐Infrared Windows I and II Phosphors for Theranostic Applications: Spectroscopy, Bioimaging, and Light‐Emitting Diode Photobiomodulation. Adv. Opt. Mater. 2023, 11, 2202061. [20] Vittadello, L.; Klenen, J.; Koempe, K.; Kocsor, L.; Szaller, Z.; Imlau, M. NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable High Energy (TIGER) Widefield Microscope. Nanomaterials 2021, 11, 3193. [21] Solano, F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules 2020, 25, 1537. [22] Fernandez-Garcia, E. Skin Protection against UV Light by Dietary Antioxidants. Food Funct. 2014, 5, 1994–2003. [23] Shen, J.; Tower, J. Effects of Light on Aging and Longevity. Ageing Res. Rev. 2019, 53, 100913. [24] Jacques, S. L. Optical Properties of Biological Tissues: A Review. Phys. Med. Biol. 2013, 58, R37. [25] O’Connor, E.; Shearer, A.; O’Brien, K. Energy-Sensitive Detectors for Astronomy: Past, Present and Future. New Astron. Rev. 2019, 87, 101526. [26] Karothu, D. P.; Dushaq, G.; Ahmed, E.; Catalano, L.; Polavaram, S.; Ferreira, R.; Li, L.; Mohamed, S.; Rasras, M.; Naumov, P. Mechanically Robust Amino Acid Crystals as Fiber-Optic Transducers and Wide Bandpass Filters for Optical Communication in the Near-Infrared. Nat. Commun. 2021, 12, 1326. [27] Minotto, A.; Haigh, P. A.; Łukasiewicz, Ł. G.; Lunedei, E.; Gryko, D. T.; Darwazeh, I.; Cacialli, F. Visible Light Communication with Efficient Far-Red/Near-Infrared Polymer Light-Emitting Diodes. Light Sci. Appl. 2020, 9, 70. [28] Zhu, Y.; Chen, H.; Han, R.; Qin, H.; Yao, Z.; Liu, H.; Ma, Y.; Wan, X.; Li, G.; Chen, Y. High-Speed Flexible Near-Infrared Organic Photodiode for Optical Communication. Natl. Sci. Rev. 2024, 11, nwad311. [29] Barberi, S.; Arena, F.; Termine, F.; Canale, A.; Olayode, I. O. Safety Aspects of Intelligent Transport Systems Applied to Road Intersections. AIP Conf. Proc. 2022, 2611, 060012. [30] Kim, I.; Martins, R. J.; Jang, J.; Badloe, T.; Khadir, S.; Jung, H.-Y.; Kim, H.; Kim, J.; Genevet, P.; Rho, J. Nanophotonics for Light Detection and Ranging Technology. Nat. Nanotechnol. 2021, 16, 508–524. [31] Hu, Z.; Fang, C.; Li, B.; Zhang, Z.; Cao, C.; Cai, M.; Su, S.; Sun, X.; Shi, X.; Li, C. First-in-Human Liver-Tumour Surgery Guided by Multispectral Fluorescence Imaging in the Visible and Near-Infrared-I/II Windows. Nat. Biomed. Eng. 2020, 4, 259–271. [32] Erlinge, D.; Maehara, A.; Ben-Yehuda, O.; Bøtker, H. E.; Maeng, M.; Kjøller-Hansen, L.; Engstrøm, T.; Matsumura, M.; Crowley, A.; Dressler, O. Identification of Vulnerable Plaques and Patients by Intracoronary Near-Infrared Spectroscopy and Ultrasound (PROSPECT II): A Prospective Natural History Study. The Lancet 2021, 397, 985–995. [33] Zhou, Y.; Li, C.; Wang, Y. Crystal‐Field Engineering Control of an Ultraviolet–Visible‐Responsive Near‐Infrared‐Emitting Phosphor and its Applications in Plant Growth, Night Vision, and NIR Spectroscopy Detection. Adv. Opt. Mater. 2022, 10, 2102246. [34] Xu, Z.; Li, C.; Yang, P.; Zhang, C.; Huang, S.; Lin, J. Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties. Cryst. Growth Des. 2009, 9, 4752–4758. [35] Li, H.; Wang, X.; Ohulchanskyy, T. Y.; Chen, G. Lanthanide‐Doped Near‐Infrared Nanoparticles for Biophotonics. Adv. Mater. 2021, 33, 2000678. [36] Puccini, A.; Liu, N.; Hemmer, E. Praseodymium-Doped Nanoparticles: Candidates for Near-Infrared-II Double-and Single-Band Nanothermometry. ACS Mater. Lett. 2024, 6, 1327–1337. [37] Meng, J.; Cui, Y.; Wang, Y. Rare Earth-Doped Nanoparticles for Near-Infrared II Image-Guided Photodynamic Therapy. ACS Appl. Nano Mater. 2024, doi: 10.1021/acsanm.4c02176. [38] Tong, L.; Cao, J.; Wang, K.; Song, J.; Mu, J. Lanthanide‐Doped Nanomaterials for Tumor Diagnosis and Treatment by Second Near‐Infrared Fluorescence Imaging. Adv. Opt. Mater. 2024, 12, 2301767. [39] Liu, S.; Du, J.; Song, Z.; Ma, C.; Liu, Q. Intervalence Charge Transfer of Cr3+-Cr3+ Aggregation for NIR-II Luminescence. Light Sci. Appl. 2023, 12, 1–10. [40] Jia, Z.; Yuan, C.; Liu, Y.; Wang, X.-J.; Sun, P.; Wang, L.; Jiang, H.; Jiang, J. Strategies to Approach High Performance in Cr3+-Doped Phosphors for High-Power NIR-LED Light Sources. Light Sci. Appl. 2020, 9, 86. [41] Xie, R.-J. Light-Emitting Diodes: Brighter NIR-Emitting Phosphor Making Light Sources Smarter. Light Sci. Appl. 2020, 9, 155. [42] Zhang, Q.; Ding, X.; Ma, X.; Su, Z.; Liu, B.; Wang, Y. Highly Efficient and Thermally Stable Broadband NIR Phosphors with Superlong Afterglow Performance and their Multifunctional Applications. Laser Photonics Rev., 2400541. [43] Ma, L.; Wei, R.; Yu, Q.; Dai, P.; Tian, X.; Hu, F.; Guo, H. Improved Broadband Luminescence in Gd2GaSb1-xTaxO7:Cr3+,Yb3+ Pyrochlore Phosphors: Near-Infrared Spectroscopic Applications and Dual-Mode Optical Thermometry. Mater. Today Chem. 2024, 38, 102090. [44] Su, S.; Sun, Y.; Liu, G.; Gong, K.; Wang, M.; Ding, S.; Dong, H.; Wang, W.; Teng, B.; Hu, C. CaLaLiTeO6:Mn4+,Tm3+ Phosphors with Multiband Near-Infrared Emission towards Multifunctional Applications. J. Lumin. 2024, 267, 120394. [45] Wu, X.; Lin, Q.; Li, Y.; Peng, J.; You, W.; Huang, D.; Ye, X. Phase Transition and Nd3+/Pr3+ Co-Doping Induced Enhancement of NIR Emission in ScP3O9:Cr3+ Phosphor. Mater. Res. Bull. 2024, 173, 112676. [46] Huang, W. T.; Chen, K. C.; Huang, M. H.; Liu, R. S. Tunable Spinel Structure Phosphors: Dynamic Change in Near‐Infrared Windows and Their Applications. Adv. Opt. Mater. 2023, 11, 2301166. [47] Zhang, X.; Wu, X.; Xu, Y.; Yin, S.; Zhong, C.; Zhou, L.; You, H. Tailoring Fe3+‐Activated Broadband NIR Phosphors: Enhancing External Quantum Efficiency and Spectrum Adjustability through Crystal Field Engineering in Double Perovskite Antimonate Structures. Adv. Opt. Mater. 2024, 12, 2302300. [48] Li, R.; Liu, Y.; Jin, C.; Zhang, L.; Zhang, J.; Wang, X. J.; Chen, G.; Jiang, J. Boosting Applications with High‐Performance Near‐Infrared Phosphor‐Converted Light‐Emitting Diodes. Laser Photonics Rev. 2024, 18, 2300608. [49] Zhan, C.; Zhu, H.; Liang, S.; Huang, Y.; Nie, W.; Wang, Z.; Hong, M. Luminescence Analysis of Heavily Mn 2+-Doped LaMgAl11O19 Phosphors: Crystallographic Site Occupation and the Formation of Mn2+–Mn2+ Dimers. J. Mater. Chem. C 2024, 12, 6932–6942. [50] Rajendran, V.; Chang, C. Y.; Huang, M. H.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Lu, K. M. Chromium Cluster Luminescence: Advancing Near‐Infrared Light‐Emitting Diode Design for Next‐Generation Broadband Compact Light Sources. Adv. Opt. Mater. 2024, 12, 2302645. [51] Chang, C. Y.; Huang, M. H.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Majewska, N.; Klimczuk, T.; Chen, J. H.; Cherng, D. H.; Lu, K. M. Ultrahigh Quantum Efficiency Near-Infrared-II Emission Achieved by Cr3+ Clusters to Ni2+ Energy Transfer. Chem. Mater. 2024, 36, 3941–3948. [52] Wang, Y.; Liu, G.; Xia, Z. NIR‐II Luminescence in Cr4+ Activated CaYGaO4 toward Non‐Invasive Temperature Sensing and Composition Detection. Laser Photonics Rev. 2024, 18, 2300717. [53] Miao, S.; Lv, X.; Shan, X.; Zhang, Y.; Liang, Y. Ultraviolet-B and Near-Infrared Dual-Band Luminescence in Bi3+/Bi2+ Codoped Persistent Phosphor for Optical Storage Application. ACS Appl. Mater. Interfaces 2024, 16, 23585–23595. [54] Li, H.; Wang, Y. K.; Liao, L. S. Near‐Infrared Luminescent Materials Incorporating Rare Earth/Transition Metal Ions: From Materials to Applications. Adv. Mater. 2024, doi: 10.1002/adma.202403076. [55] Efros, A. L. Quantum Dots Realize their Potential; Nature Publishing Group UK London, 2019. [56] Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat. Methods 2008, 5, 763–775. [57] Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M. Near-Infrared Fluorescent Type II Quantum Dots for Sentinel Lymph Node Mapping. Nat. Biotechnol. 2004, 22, 93–97. [58] Ding, C.; Huang, Y.; Shen, Z.; Chen, X. Synthesis and Bioapplications of Ag2S Quantum Dots with Near‐Infrared Fluorescence. Adv. Mater. 2021, 33, 2007768. [59] Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q. Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window. ACS Nano 2012, 6, 3695–3702. [60] Lim, L. J.; Zhao, X.; Tan, Z. K. Non‐Toxic CuInS2/ZnS Colloidal Quantum Dot for Near‐Infrared Light‐Emitting Diodes. Adv. Mater. 2023, 2301887. [61] Pons, T.; Pic, E.; Lequeux, N.; Cassette, E.; Bezdetnaya, L.; Guillemin, F.; Marchal, F.; Dubertret, B. Cadmium-Free CuInS2/ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity. ACS Nano 2010, 4, 2531–2538. [62] Franke, D.; Harris, D. K.; Chen, O.; Bruns, O. T.; Carr, J. A.; Wilson, M. W.; Bawendi, M. G. Continuous Injection Synthesis of Indium Arsenide Quantum Dots Emissive in the Short-Wavelength Infrared. Nat. Commun. 2016, 7, 12749. [63] Li, S.; Su, W.; Wu, H.; Yuan, T.; Yuan, C.; Liu, J.; Deng, G.; Gao, X.; Chen, Z.; Bao, Y. Targeted Tumour Theranostics in Mice via Carbon Quantum Dots Structurally Mimicking Large Amino Acids. Nat. Biomed. Eng. 2020, 4, 704–716. [64] Lian, W.; Tu, D.; Weng, X.; Yang, K.; Li, F.; Huang, D.; Zhu, H.; Xie, Z.; Chen, X. Near‐Infrared Nanophosphors Based on CuInSe2 Quantum Dots with Near‐Unity Photoluminescence Quantum Yield for Micro‐LEDs Applications. Adv. Mater. 2024, 36, 2311011. [65] Pan, J.-L.; Shen, W.-S.; Li, S.-N.; Zhang, Z.-D.; Zhao, F.; Duan, H.-W.; Wang, Y.-K.; Liao, L.-S. Polarity-Mediated Antisolvent Control Enables Efficient Lanthanide-Based Near-Infrared Perovskite LEDs. Nano Lett. 2024, 24, 2765–2772. [66] Althobaiti, M.; Al-Naib, I. Recent Developments in Instrumentation of Functional Near-Infrared Spectroscopy Systems. Appl. Sci. 2020, 10, 6522. [67] K. M, A.; Krishnamoorthy, R.; Gogula, S.; Muthu, S.; Chellamuthu, G.; Subramaniam, K. Internet of Things Enabled Open Source Assisted Real-Time Blood Glucose Monitoring Framework. Sci. Rep. 2024, 14, 6151. [68] Hina, A.; Saadeh, W. Noninvasive Blood Glucose Monitoring Systems Using Near-Infrared Technology—A Review. Sensors 2022, 22, 4855. [69] Beć, K. B.; Grabska, J.; Huck, C. W. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020, 25, 2948. [70] Feldmann, A.; Schmitz, R.; Erlacher, D. Near-Infrared Spectroscopy-Derived Muscle Oxygen Saturation on a 0% to 100% Scale: Reliability and Validity of the Moxy Monitor. J. Biomed. Opt. 2019, 24, 115001–115001. [71] Chen, W.-L.; Wagner, J.; Heugel, N.; Sugar, J.; Lee, Y.-W.; Conant, L.; Malloy, M.; Heffernan, J.; Quirk, B.; Zinos, A. Functional Near-Infrared Spectroscopy and its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Front. Neurosci. 2020, 14, 724. [72] Perlet, M. R.; Herren, J. T.; Traylor, M. K.; Bailey, M. D.; Keller, J. L. Near-Infrared Spectroscopy Does Not Track Forearm Blood Flow during Venous Occlusion Plethysmography. Appl. Sci. 2024, 14, 3205. [73] Williams, I.; Picton, A.; Hardy, S.; Mortimer, A.; McCollum, C. Cerebral Hypoxia Detected by Near Infrared Spectroscopy. Anaesthesia 1994, 49, 762–766. [74] Germon, T. J.; Young, A.; Manara, A. R.; Nelson, R. J. Extracerebral Absorption of Near Infrared Light Influences the Detection of Increased Cerebral Oxygenation Monitored by Near Infrared Spectroscopy. J. Neurol. Neurosurg. Psychiatry 1995, 58, 477–479. [75] Irani, F.; Platek, S. M.; Bunce, S.; Ruocco, A. C.; Chute, D. Functional Near Infrared Spectroscopy (fNIRS): An Emerging Neuroimaging Technology with Important Applications for the Study of Brain Disorders. Clin. Neuropsychol. 2007, 21, 9–37. [76] Lloyd-Fox, S.; Blasi, A.; Elwell, C. Illuminating the Developing Brain: the Past, Present and Future of Functional Near Infrared Spectroscopy. Neurosci. Biobehav. Rev. 2010, 34, 269–284. [77] Yoshida, Y.; Kawana, T.; Hoshino, E.; Minagawa, Y.; Miki, N. Capturing Human Perceptual and Cognitive Activities via Event-Related Potentials Measured with Candle-Like Dry Microneedle Electrodes. Micromachines 2020, 11, 556. [78] Jean-Pierre, P. Integrating Functional Near-Infrared Spectroscopy in the Characterization, Assessment, and Monitoring of Cancer and Treatment-Related Neurocognitive Dysfunction. NeuroImage 2014, 85, 408–414. [79] Ryan, T. E.; Brophy, P.; Lin, C. T.; Hickner, R. C.; Neufer, P. D. Assessment of In Vivo Skeletal Muscle Mitochondrial Respiratory Capacity in Humans by Near‐Infrared Spectroscopy: A Comparison with In Situ Measurements. J. Physiol. 2014, 592, 3231–3241. [80] Ives, S. J.; Fadel, P. J.; Brothers, R. M.; Sander, M.; Wray, D. W. Exploring the Vascular Smooth Muscle Receptor Landscape In Vivo: Ultrasound Doppler versus Near-Infrared Spectroscopy Assessments. Am. J. Physiol. Heart Circ. 2014, 306, H771–H776. [81] NIRSystems, M. A Guide to Near-Infrared Spectroscopic Analysis of Industrial Manufacturing Processes. United States: Silver Spring 2002, 5. [82] Prevolnik, M.; Čandek-Potokar, M.; Škorjanc, D. Ability of NIR Spectroscopy to Predict Meat Chemical Composition and Quality-A Review. Czech J. Anim. Sci. 2004, 49, 500–510. [83] Evangelista, C.; Basiricò, L.; Bernabucci, U. An Overview on the Use of Near Infrared Spectroscopy (NIRS) on Farms for the Management of Dairy Cows. Agriculture 2021, 11, 296. [84] Beć, K. B.; Grabska, J.; Huck, C. W. Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives. Foods 2022, 11, 1465. [85] Alamu, E. O.; Nuwamanya, E.; Cornet, D.; Meghar, K.; Adesokan, M.; Tran, T.; Belalcazar, J.; Desfontaines, L.; Davrieux, F. Near‐Infrared Spectroscopy Applications for High‐Throughput Phenotyping for Cassava and Yam: A Review. Int. J. Food Sci. Technol. 2021, 56, 1491–1501. [86] Cortés, V.; Blasco, J.; Aleixos, N.; Cubero, S.; Talens, P. Monitoring Strategies for Quality Control of Agricultural Products Using Visible and Near-Infrared Spectroscopy: A Review. Trends Food Sci. Technol. 2019, 85, 138–148. [87] Manfreda, S.; McCabe, M. F.; Miller, P. E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [88] Pu, Y.-Y.; O'Donnell, C.; Tobin, J. T.; O'Shea, N. Review of Near-Infrared Spectroscopy as a Process Analytical Technology for Real-Time Product Monitoring in Dairy Processing. Int. Dairy J. 2020, 103, 104623. [89] Demmig-Adams, B.; Adams Iii, W. Photoprotection and Other Responses of Plants to High Light Stress. Chem. Rev. 1992, 43, 599–626. [90] Brilli, F.; Fares, S.; Ghirardo, A.; de Visser, P.; Calatayud, V.; Muñoz, A.; Annesi-Maesano, I.; Sebastiani, F.; Alivernini, A.; Varriale, V. Plants for Sustainable Improvement of Indoor Air Quality. Trends Plant Sci. 2018, 23, 507–512. [91] Denmead, O. T.; Shaw, R. H. Availability of Soil Water to Plants as Affected by Soil Moisture Content and Meteorological Conditions. Agron. J. 1962, 54, 385–390. [92] Fang, S.; Lang, T.; Cai, M.; Han, T. Light Keys Open Locks of Plant Photoresponses: A Review of Phosphors for Plant Cultivation LEDs. J. Alloys Compd. 2022, 902, 163825. [93] Stapleton, A. E. Ultraviolet Radiation and Plants: Burning Questions. Plant Cell 1992, 4, 1353. [94] Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G. T.; Batschauer, A.; Ahmad, M. The Cryptochromes: Blue Light Photoreceptors in Plants and Animals. Annu. Rev. Plant Biol. 2011, 62, 335–364. [95] Golovatskaya, I.; Karnachuk, R. A. Role of Green Light in Physiological Activity of Plants. Russ. J. Plant Physiol. 2015, 62, 727–740. [96] Ohashi-Kaneko, K.; Matsuda, R.; Goto, E.; Fujiwara, K.; Kurata, K. Growth of Rice Plants under Red Light with or without Supplemental Blue Light. Soil Sci. Plant Nutr. 2006, 52, 444–452. [97] Fang, M.-H.; De Guzman, G. N. A.; Bao, Z.; Majewska, N.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Yang, C.-W.; Lu, K.-M.; Sheu, H.-S.; Hu, S. F.; Liu, R. S. Ultra-High-Efficiency Near-Infrared Ga2O3:Cr3+ Phosphor and Controlling of Phytochrome. J. Mater. Chem. C 2020, 8, 11013–11017. [98] Grechanik, V.; Tsygankov, A. The Relationship between Photosystem II Regulation and Light-Dependent Hydrogen Production by Microalgae. Biophys. Rev. 2022, 14, 893–904. [99] Fromme, P.; Jordan, P.; Krauß, N. Structure of Photosystem I. Biochim. Biophys. Acta Bioenerg. 2001, 1507, 5–31. [100] Horton, P.; Ruban, A. Regulation of Photosystem II. Photosynth. Res. 1992, 34, 375–385. [101] Li, D.; Li, W.; Zhang, H.; Zhang, X.; Zhuang, J.; Liu, Y.; Hu, C.; Lei, B. Far-Red Carbon Dots as Efficient Light-Harvesting Agents for Enhanced Photosynthesis. ACS Appl. Mater. Interfaces 2020, 12, 21009–21019. [102] Barber, S.; Walker, J.; Vasey, E. H. Mechanisms for Movement of Plant Nutrients from Soil and Fertilizer to Plant Root. J. Agric. Food. Chem. 1963, 11, 204–207. [103] Verma, S. K.; Das, A. K.; Patel, M. K.; Shah, A.; Kumar, V.; Gantait, S. Engineered Nanomaterials for Plant Growth and Development: A Perspective Analysis. Sci. Total Environ. 2018, 630, 1413–1435. [104] Huang, W. T.; Su, T. Y.; Chan, M. H.; Tsai, J. Y.; Do, Y. Y.; Huang, P. L.; Hsiao, M.; Liu, R. S. Near‐Infrared Nanophosphor Embedded in Mesoporous Silica Nanoparticle with High Light‐Harvesting Efficiency for Dual Photosystem Enhancement. Angew. Chem. Inter. Ed. 2021, 60, 6955–6959. [105] Naznin, M. T.; Lefsrud, M.; Gravel, V.; Azad, M. O. K. Blue Light Added with Red LEDs Enhance Growth Characteristics, Pigments Content, and Antioxidant Capacity in Lettuce, Spinach, Kale, Basil, and Sweet Pepper in a Controlled Environment. Plants 2019, 8, 93. [106] Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J. A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L. F. Optimal Light Intensity for Sustainable Water and Energy Use in Indoor Cultivation of Lettuce and Basil under Red and Blue LEDs. Sci. Hortic. 2020, 272, 109508. [107] Gu, S.; Xia, M.; Zhou, C.; Kong, Z.; Molokeev, M. S.; Liu, L.; Wong, W.-Y.; Zhou, Z. Red Shift Properties, Crystal Field Theory and Nephelauxetic Effect on Mn4+-Doped SrMgAl10-yGayO17 Red Phosphor for Plant Growth LED Light. Chem. Eng. J. 2020, 396, 125208. [108] Gai, S.; Zhou, C.; Peng, L.; Wu, M.; Gao, P.; Su, L.; Molokeev, M.; Zhou, Z.; Xia, M. A Novel Cr3+-Doped Stannate Far Red Phosphor for Plant Lighting: Structure Evolution, Broad-Narrow Spectrum Tuning and Application Prospect. Mater. Today Chem. 2022, 26, 101107. [109] Hooks, T.; Sun, L.; Kong, Y.; Masabni, J.; Niu, G. Adding UVA and Far-Red Light to White LED Affects Growth, Morphology, and Phytochemicals of Indoor-Grown Microgreens. Sustainability 2022, 14, 8552. [110] Yang, L.; Wu, C.; Parker, E.; Li, Y.; Dong, Y.; Tucker, L.; Brann, D. W.; Lin, H. W.; Zhang, Q. Non-Invasive Photobiomodulation Treatment in an Alzheimer Disease-Like Transgenic Rat Model. Theranostics 2022, 12, 2205. [111] Foo, A. S. C.; Soong, T. W.; Yeo, T. T.; Lim, K.-L. Mitochondrial Dysfunction and Parkinson’s Disease—Near-Infrared Photobiomodulation as a Potential Therapeutic Strategy. Front. Aging Neurosci. 2020, 12, 89. [112] Kim, H.; Kim, M. J.; Kwon, Y. W.; Jeon, S.; Lee, S. Y.; Kim, C. S.; Choi, B. T.; Shin, Y. I.; Hong, S. W.; Shin, H. K. Benefits of a Skull‐Interfaced Flexible and Implantable Multilight Emitting Diode Array for Photobiomodulation in Ischemic Stroke. Adv. Sci. 2022, 9, 2104629. [113] Salehpour, F.; Mahmoudi, J.; Kamari, F.; Sadigh-Eteghad, S.; Rasta, S. H.; Hamblin, M. R. Brain Photobiomodulation Therapy: A Narrative Review. Mol. Neurobiol. 2018, 55, 6601–6636. [114] Bocanegra-Bernal, M. Hot Isostatic Pressing (HIP) Technology and Its Applications to Metals and Ceramics. J. Mater. Sci. 2004, 39, 6399–6420. [115] Piao, X.; Machida, K.-i.; Horikawa, T.; Hanzawa, H.; Shimomura, Y.; Kijima, N. Preparation of CaAlSiN3:Eu2+ Phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties. Chem. Mater. 2007, 19, 4592–4599. [116] Amooghin, A. E.; Sanaeepur, H.; Omidkhah, M.; Kargari, A. “Ship-in-a-Bottle”, A New Synthesis Strategy for Preparing Novel Hybrid Host–Guest Nanocomposites for Highly Selective Membrane Gas Separation. j. Mater. Chem. A 2018, 6, 1751–1771. [117] Qiao, Z. A.; Huo, Q.; Chi, M.; Veith, G. M.; Binder, A. J.; Dai, S. A “Ship‐in‐a‐Bottle” Approach to Synthesis of Polymer Dots@Silica or Polymer Dots@Carbon Core‐Shell Nanospheres. Adv. Mater. 2012, 24, 6017–6021. [118] Maligal-Ganesh, R. V.; Xiao, C.; Goh, T. W.; Wang, L.-L.; Gustafson, J.; Pei, Y.; Qi, Z.; Johnson, D. D.; Zhang, S.; Tao, F. A Ship-in-a-Bottle Strategy to Synthesize Encapsulated Intermetallic Nanoparticle Catalysts: Exemplified for Furfural Hydrogenation. ACS Catal. 2016, 6, 1754–1763. [119] Hueckel, T.; Hocky, G. M.; Sacanna, S. Total Synthesis of Colloidal Matter. Nat. Rev. Mater. 2021, 6, 1053–1069. [120] Pecharsky, V.; Zavalij, P. Fundamentals of Powder Diffraction and Structural Characterization of Materials Springer ScienceIBusiness Media. New York 2005. [121] West, A. R. Solid State Chemistry and Its Applications; John Wiley & Sons, 2022. [122] Bhattacharjee, S. DLS and Zeta Potential–What They are and What They are not? J. Controlled Release 2016, 235, 337–351. [123] Zeng, Y.; Prasetyo, L.; Tan, S. J.; Fan, C.; Do, D.; Nicholson, D. On the Hysteresis of Adsorption and Desorption of Simple Gases in Open End and Closed End Pores. Chem. Eng. Sci. 2017, 158, 462–479. [124] Liu, S.; Xu, W.; Li, X.; Pang, D.-W.; Xiong, H. BOIMPY-Based NIR-II Fluorophore with High Brightness and Long Absorption beyond 1000 nm for In Vivo Bioimaging: Synergistic Steric Regulation Strategy. ACS Nano 2022, 16, 17424–17434. [125] Zhang, L.; Tong, S.; Zhang, Q.; Bao, G. Lipid-Encapsulated Fe3O4 Nanoparticles for Multimodal Magnetic Resonance/Fluorescence Imaging. ACS Appl. Nano Mater. 2020, 3, 6785–6797. [126] Giraldo, J. P.; Landry, M. P.; Faltermeier, S. M.; McNicholas, T. P.; Iverson, N. M.; Boghossian, A. A.; Reuel, N. F.; Hilmer, A. J.; Sen, F.; Brew, J. A. Plant Nanobionics Approach to Augment Photosynthesis and Biochemical Sensing. Nat. Mater. 2014, 13, 400–408. [127] Zhen, S.; Bugbee, B. Far‐Red Photons Have Equivalent Efficiency to Traditional Photosynthetic Photons: Implications for Redefining Photosynthetically Active Radiation. Plant Cell Environ. 2020, 43, 1259–1272. [128] Zhou, Z.; Xia, M.; Zhong, Y.; Gai, S.; Huang, S.; Tian, Y.; Lu, X.; Zhou, N. Dy3+@Mn4+ Co-Doped Ca14Ga10−mAlmZn6O35 Far-Red Emitting Phosphors with High Brightness and Improved Luminescence and Energy Transfer Properties for Plant Growth LED Lights. J. Mater. Chem. C 2017, 5, 8201–8210. [129] Deng, J.; Zhang, H.; Zhang, X.; Zheng, Y.; Yuan, J.; Liu, H.; Liu, Y.; Lei, B.; Qiu, J. Ultrastable Red-Emitting Phosphor-in-Glass for Superior High-Power Artificial Plant Growth LEDs. J. Mater. Chem. C 2018, 6, 1738–1745. [130] Zhang, Z.; Shen, L.; Zhang, H.; Ding, L.; Shao, G.; Liang, X.; Xiang, W. Novel Red-Emitting CsPb1− xTixI3 Perovskite QDs@ Glasses with Ambient Stability for High Efficiency White LEDs and Plant Growth LEDs. Chem. Eng. J. 2019, 378, 122125. [131] Nakajima, T.; Tsuchiya, T. Plant Habitat-Conscious White Light Emission of Dy3+ in Whitlockite-Like Phosphates: Reduced Photosynthesis and Inhibition of Bloom Impediment. ACS Appl. Mater. Interfaces 2015, 7, 21398–21407. [132] Mao, Z.; Chen, J.; Li, J.; Wang, D. Dual-Responsive Sr2SiO4:Eu2+-Ba3MgSi2O8:Eu2+,Mn2+ Composite Phosphor to Human Eyes and Plant Chlorophylls Applications for General Lighting and Plant Lighting. Chem. Eng. J. 2016, 284, 1003–1007. [133] Leano Jr, J. L.; Mariano, C. O. M.; Huang, W.-T.; Mahlik, S.; Lesniewski, T.; Grinberg, M.; Sheu, H.-S.; Hu, S. F.; Liu, R. S. Thermally Stable and Deep Red Luminescence of Sr1–xBax[Mg2Al2N4]:Eu2+ (x = 0–1) Phosphors for Solid State and Agricultural Lighting Applications. ACS Appl. Mater. Interfaces 2020, 12, 23165–23171. [134] Wondraczek, L.; Batentschuk, M.; Schmidt, M. A.; Borchardt, R.; Scheiner, S.; Seemann, B.; Schweizer, P.; Brabec, C. J. Solar Spectral Conversion for Improving the Photosynthetic Activity in Algae Reactors. Nat. Commun. 2013, 4, 2047. [135] Xiang, J.; Zheng, J.; Zhou, Z.; Suo, H.; Zhao, X.; Zhou, X.; Zhang, N.; Molokeev, M. S.; Guo, C. Enhancement of Red Emission and Site Analysis in Eu2+ Doped New-Type Structure Ba3CaK(PO4)3 for Plant Growth White LEDs. Chem. Eng. J. 2019, 356, 236–244. [136] Chen, J.; Guo, C.; Yang, Z.; Li, T.; Zhao, J. Li2SrSiO4:Ce3+,Pr3+ Phosphor with Blue, Red, and Near‐Infrared Emissions Used for Plant Growth LED. J. Am. Ceram. Soc. 2016, 99, 218–225. [137] Xiang, J.; Chen, J.; Zhang, N.; Yao, H.; Guo, C. Far Red and Near Infrared Double-Wavelength Emitting Phosphor Gd2ZnTiO6:Mn4+,Yb3+ for Plant Cultivation LEDs. Dyes Pigm. 2018, 154, 257–262. [138] Cao, R.; Chen, T.; Ren, Y.; Chen, T.; Ao, H.; Li, W.; Zheng, G. Synthesis and Photoluminescence Properties of Ca2LaTaO6:Mn4+ Phosphor for Plant Growth LEDs. J. Alloys Comp. 2019, 780, 749–755. [139] Li, W.; Zheng, Y.; Zhang, H.; Liu, Z.; Su, W.; Chen, S.; Liu, Y.; Zhuang, J.; Lei, B. Phytotoxicity, Uptake, and Translocation of Fluorescent Carbon Dots in Mung Bean Plants. ACS Appl. Mater. Interfaces 2016, 8, 19939–19945. [140] Li, W.; Zhang, H.; Zheng, Y.; Chen, S.; Liu, Y.; Zhuang, J.; Liu, W.-R.; Lei, B. Multifunctional Carbon Dots for Highly Luminescent Orange-Emissive Cellulose Based Composite Phosphor Construction and Plant Tissue Imaging. Nanoscale 2017, 9, 12976–12983. [141] Li, W.; Wu, S.; Zhang, H.; Zhang, X.; Zhuang, J.; Hu, C.; Liu, Y.; Lei, B.; Ma, L.; Wang, X. Enhanced Biological Photosynthetic Efficiency Using Light‐Harvesting Engineering with Dual‐Emissive Carbon Dots. Adv. Funct. Mater. 2018, 28, 1804004. [142] Fincheira, P.; Tortella, G.; Duran, N.; Seabra, A. B.; Rubilar, O. Current Applications of Nanotechnology to Develop Plant Growth Inducer Agents as an Innovation Strategy. Crit. Rev. Biotechnol. 2020, 40, 15–30. [143] Ali, S.; Rizwan, M.; Hussain, A.; ur Rehman, M. Z.; Ali, B.; Yousaf, B.; Wijaya, L.; Alyemeni, M. N.; Ahmad, P. Silicon Nanoparticles Enhanced the Growth and Reduced the Cadmium Accumulation in Grains of Wheat (Triticum Aestivum L.). Plant Physiol. Biochem. 2019, 140, 1–8. [144] Gohari, G.; Mohammadi, A.; Akbari, A.; Panahirad, S.; Dadpour, M. R.; Fotopoulos, V.; Kimura, S. Titanium Dioxide Nanoparticles (TiO2 NPs) Promote Growth and Ameliorate Salinity Stress Effects on Essential Oil Profile and Biochemical Attributes of Dracocephalum Moldavica. Sci. Rep. 2020, 10, 912. [145] Chan, M. H.; Huang, W. T.; Wang, J.; Liu, R. S.; Hsiao, M. Next‐Generation Cancer‐Specific Hybrid Theranostic Nanomaterials: MAGE‐A3 NIR Persistent Luminescence Nanoparticles Conjugated to Afatinib for In Situ Suppression of Lung Adenocarcinoma Growth and Metastasis. Adv. Sci. 2020, 7, 1903741. [146] Huang, W. T.; Cheng, C. L.; Bao, Z.; Yang, C. W.; Lu, K. M.; Kang, C. Y.; Lin, C. M.; Liu, R. S. Broadband Cr3+,Sn4+‐Doped Oxide Nanophosphors for Infrared Mini Light‐Emitting Diodes. Angew. Chem. Int. Ed. 2019, 58, 2069–2072. [147] Johnson, C.; Stout, P.; Broyer, T. C.; Carlton, A. B. Comparative Chlorine Requirements of Different Plant Species. Plant Soil 1957, 8, 337–353. [148] Lillo, C. Light Regulation of Nitrate Reductase in Green Leaves of Higher Plants. Physiol. Plant. 1994, 90, 616–620. [149] Huang, W.-T.; Su, T.-Y.; Chuang, J.-H.; Lu, K.-M.; Hu, S. F.; Liu, R. S. Plant Growth Modeling and Response from Broadband Phosphor-Converted Lighting for Indoor Agriculture. ACS Appl. Mater. Interfaces 2023. [150] Yeh, N.; Chung, J.-P. High-Brightness LEDs—Energy Efficient Lighting Sources and their Potential in Indoor Plant Cultivation. Renewable Sustainable Energy Rev. 2009, 13, 2175–2180. [151] Naranjani, B.; Najafianashrafi, Z.; Pascual, C.; Agulto, I.; Chuang, P.-Y. A. Computational Analysis of the Environment in an Indoor Vertical Farming System. Int. J. Heat Mass Transfer 2022, 186, 122460. [152] Coughlan, N. E.; Walsh, É.; Bolger, P.; Burnell, G.; O'Leary, N.; O'Mahoney, M.; Paolacci, S.; Wall, D.; Jansen, M. A. Duckweed bioreactors: Challenges and Opportunities for Large-Scale Indoor Cultivation of Lemnaceae. J. Cleaner Prod. 2022, 336, 130285. [153] Lubna, F. A.; Lewus, D. C.; Shelford, T. J.; Both, A.-J. What You May not Realize about Vertical Farming. Horticulturae 2022, 8, 322. [154] Petersen, F.; Demann, J.; Restemeyer, D.; Olfs, H.-W.; Westendarp, H.; Appenroth, K.-J.; Ulbrich, A. Influence of Light Intensity and Spectrum on Duckweed Growth and Proteins in a Small-Scale, Re-Circulating Indoor Vertical Farm. Plants 2022, 11, 1010. [155] Abdullah, M. J.; Zhang, Z.; Matsubae, K. Potential for Food Self-Sufficiency Improvements through Indoor and Vertical Farming in the Gulf Cooperation Council: Challenges and Opportunities from the Case of Kuwait. Sustainability 2021, 13, 12553. [156] Fang, M.-H.; Li, T.-Y.; Huang, W.-T.; Cheng, C.-L.; Bao, Z.; Majewska, N.; Mahlik, S.; Yang, C.-W.; Lu, K.-M.; Leniec, G.; Kaczmarek, S. M.; Sheu, H.-S.; Liu, R. S. Surface-Protected High-Efficiency Nanophosphors via Space-Limited Ship-in-a-Bottle Synthesis for Broadband Near-Infrared Mini-Light-Emitting Diodes. ACS Energy Lett. 2021, 6, 659–664. [157] Rajendran, V.; Fang, M.-H.; Guzman, G. N. D.; Lesniewski, T.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Lin, Y.-S.; Lu, K.-M.; Lin, C.-M.; Chang, H.; Hu, S. F.; Liu, R. S. Super Broadband Near-Infrared Phosphors with High Radiant Flux as Future Light Sources for Spectroscopy Applications. ACS Energy Lett. 2018, 3, 2679–2684. [158] Massa, G. D.; Kim, H.-H.; Wheeler, R. M.; Mitchell, C. A. Plant Productivity in Response to LED Lighting. HortScience 2008, 43, 1951–1956. [159] Poulet, L.; Massa, G.; Morrow, R.; Bourget, C.; Wheeler, R.; Mitchell, C. Significant Reduction in Energy for Plant-Growth Lighting in Space Using Targeted LED Lighting and Spectral Manipulation. Life Sci. Space Res. 2014, 2, 43–53. [160] Li, J.; Wu, T.; Huang, K.; Liu, Y.; Liu, M.; Wang, J. Effect of LED Spectrum on the Quality and Nitrogen Metabolism of Lettuce Under Recycled Hydroponics. Front. Plant Sci. 2021, 12, 678197. [161] Ahmed, H. A.; Yu-Xin, T.; Qi-Chang, Y. Optimal Control of Environmental Conditions Affecting Lettuce Plant Growth in a Controlled Environment with Artificial Lighting: A Review. S. Afr. J. Bot. 2020, 130, 75–89. [162] Park, Y.; Runkle, E. S. Spectral Effects of Light-Emitting Diodes on Plant Growth, Visual Color Quality, and Photosynthetic Photon Efficacy: White Versus Blue Plus Red Radiation. PLoS One 2018, 13, e0202386. [163] Paradiso, R.; Proietti, S. Light-quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [164] Cioć, M.; Szewczyk, A.; Żupnik, M.; Kalisz, A.; Pawłowska, B. LED Lighting Affects Plant Growth, Morphogenesis and Phytochemical Contents of Myrtus Communis L. In Vitro. Plant Cell Tissue Organ Cult. 2018, 132, 433–447. [165] Zhou, Y.; Li, C.; Wang, Y. Crystal‐Field Engineering Control of an Ultraviolet–Visible–Responsive Near–Infrared–Emitting Phosphor and its Applications in Plant Growth, Night Vision, and NIR Spectroscopy Detection. Adv. Opt. Mater. 2022, 10, 2102246. [166] Liang, S.; Huang, D.; Hu, J.; Chen, D.; Xu, K.; Zhu, H. Highly Efficient Red Emitting Phosphor with Enhanced Blue-Light Absorption through a Local Crystal Field Regulation Strategy. Chem. Eng. J. 2022, 429, 132231. [167] Zhong, Y.; Gai, S.; Xia, M.; Gu, S.; Zhang, Y.; Wu, X.; Wang, J.; Zhou, N.; Zhou, Z. Enhancing Quantum Efficiency and Tuning Photoluminescence Properties in Far-Red-Emitting Phosphor Ca14Ga10Zn6O35:Mn4+ Based on Chemical Unit Engineering. Chem. Eng. J. 2019, 374, 381–391. [168] Zhang, Z.; Shen, L.; Zhang, H.; Ding, L.; Shao, G.; Liang, X.; Xiang, W. Novel Red-Emitting CsPb1−xTixI3 Perovskite QDs@Glasses with Ambient Stability for High Efficiency White LEDs and Plant Growth LEDs. Chem. Eng. J. 2019, 378, 122125. [169] Zhang, L.; Zhu, M.; Sun, Y.; Zhang, J.; Zhang, M.; Zhang, H.; Zhou, F.; Qu, J.; Song, J. Deep-Red Emissive Colloidal Lead-Based Triiodide Perovskite/Telluride Nanoscale Heterostructures with Reduced Surface Defects and Enhanced Stability for Indoor Lighting Applications. Nano Energy 2021, 90, 106506. [170] Pattison, P.; Tsao, J.; Brainard, G.; Bugbee, B. LEDs for Photons, Physiology and Food. Nature 2018, 563, 493–500. [171] Fang, M.-H.; Leaño Jr, J. L.; Liu, R. S. Control of Narrow-Band Emission in Phosphor Materials for Application in Light-Emitting Diodes. ACS Energy Lett. 2018, 3, 2573–2586. [172] Fang, M.-H.; Chen, K.-C.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Yang, C.-W.; Lu, K.-M.; Sheu, H.-S.; Liu, R. S. Hidden Structural Evolution and Bond Valence Control in Near-Infrared Phosphors for Light-Emitting Diodes. ACS Energy Lett. 2020, 6, 109–114. [173] Fang, M.-H.; Yang, T.-H.; Lesniewski, T.; Lee, C.; Mahlik, S.; Grinberg, M.; Peterson, V. K.; Didier, C.; Pang, W. K.; Su, C.; Liu, R. S. Hydrogen-Containing Na3HTi1–xMnxF8 Narrow-Band Phosphor for Light-Emitting Diodes. ACS Energy Lett. 2019, 4, 527–533. [174] Zhou, C.; Peng, L.; Kong, Z.; Wu, M.; Molokeev, M. S.; Zhou, Z.; Wang, J.; Xia, M. A High Thermal Stability Cr3+-Doped Gallate Far Red Phosphor for Plant Lighting: Structure, Luminescence Enhancement and Application Prospect. J. Mater. Chem. C 2022, 10, 5829–5839. [175] Zhou, Z.; Feng, S.; Gai, S.; Gao, P.; Xu, C.; Xia, M.; Tang, W.; Lu, X. Affordable Phosphor-Converted LEDs with Specific Light Quality Facilitate the Tobacco Seedling Growth with Low Energy Consumption in Industrial Seedling Raising. J. Photochem. Photobiol. B Biol. 2022, 235, 112564. [176] Xiang, J.; Zhou, Z.; Zheng, J.; Chen, Y.; Suo, H.; Zhao, X.; Zhao, L.; Guo, C. Red Phosphors A2GdNbO6:Mn4+ (A = Ca, Sr, Ba) for Plant Growth LEDs with Emerson Enhancement Effect. Opt. Mater. 2020, 109, 110344. [177] Gong, W.; Luo, J.; Zhou, W.; Fan, J.; Sun, Z.; Zeng, S.; Pan, H.; Zhu, Z.; Yang, X.; Yu, Z. Thermal-Stable Blue-Red Dual-Emitting Na2Mg2Si6O15:Eu2+,Mn2+ Phosphor for Plant Growth Lighting. J. Lumin. 2021, 239, 118372. [178] Tsai, Y. T.; Nguyen, H. D.; Lazarowska, A.; Mahlik, S.; Grinberg, M.; Liu, R. S. Improvement of the Water Resistance of a Narrow‐Band Red‐Emitting SrLiAl3N4:Eu2+ Phosphor Synthesized under High Isostatic Pressure through Coating with an Organosilica Layer. Angew. Chem. Int. Ed. 2016, 55, 9652–9656. [179] Huang, W.-T.; Meesala, Y.; Hsueh, H.-P.; Fang, M.-H.; Bao, Z.; Chiou, J.-W.; Liu, R. S. Systematic Treatment and Evaluation of Nitride Phosphor with Hybrid Layer Modification Against Moisture Degradation. Chem. Eng. J. 2022, 430, 132789. [180] Shionoya, S.; Yen, W. M.; Yamamoto, H. Phosphor handbook; CRC press, 2018. [181] Fang, M.-H.; Lin, J.-C.; Huang, W.-T.; Majewska, N.; Barzowska, J.; Mahlik, S.; Pang, W. K.; Lee, J.-F.; Sheu, H.-S.; Liu, R. S. Linking Macro-and Micro-Structural Analysis with Luminescence Control in Oxynitride Phosphors for Light-Emitting Diodes. Chem. Mater. 2021, 33, 7897–7904. [182] Fang, M. H.; Mahlik, S.; Lazarowska, A.; Grinberg, M.; Molokeev, M. S.; Sheu, H. S.; Lee, J. F.; Liu, R. S. Structural Evolution and Effect of the Neighboring Cation on the Photoluminescence of Sr(LiAl3)1−x(SiMg3)xN4:Eu2+ Phosphors. Angew. Chem. Int. Ed. 2019, 131, 7849–7854. [183] Lei, B.; Machida, K.-i.; Horikawa, T.; Hanzawa, H. Synthesis and Photoluminescence Properties of CaAlSiN3:Eu2+ Nanocrystals. Chem. Lett. 2010, 39, 104–105. [184] Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K. V.; Jijakli, H.; Thorarinsdottir, R. Challenges of Sustainable and Commercial Aquaponics. Sustainability 2015, 7, 4199–4224. [185] Lillo, C.; Appenroth, K.-J. Light Regulation of Nitrate Reductase in Higher Plants: Which Photoreceptors are Involved? Plant Biol. 2001, 3, 455–465. [186] Huang, W.-T.; Yoon, S.-Y.; Wu, B.-H.; Lu, K.-M.; Lin, C.-M.; Yang, H.; Liu, R. S. Ultra-Broadband Near-Infrared Emission CuInS2/ZnS Quantum Dots with High Power Efficiency and Stability for the Theranostic Applications of Mini Light-Emitting Diodes. Chem. Commun. 2020, 56, 8285–8288. [187] Cheng, C.-Y.; Ou, K.-L.; Huang, W.-T.; Chen, J.-K.; Chang, J.-Y.; Yang, C.-H. Gadolinium-Based CuInS2/ZnS Nanoprobe for Dual-Modality Magnetic Resonance/Optical Imaging. ACS Appl. Mater. Interfaces 2013, 5, 4389–4400. [188] Long, X.; Tan, X.; He, Y.; Zou, G. Near-Infrared Electrochemiluminescence from Non-Toxic CuInS2 Nanocrystals. J. Mater. Chem. C 2017, 5, 12393–12399. [189] Qi, K.; Wang, Y.; Wang, R.; Wu, D.; Li, G.-D. Facile Synthesis of Homogeneous CuInS2 Quantum Dots with Tunable Near-Infrared Emission. J. Mater. Chem. C 2016, 4, 1895–1899. [190] Yuan, S.; Wang, Z. K.; Xiao, L. X.; Zhang, C. F.; Yang, S. Y.; Chen, B. B.; Ge, H. T.; Tian, Q. S.; Jin, Y.; Liao, L. S. Optimization of Low‐Dimensional Components of Quasi‐2D Perovskite Films for Deep‐Blue Light‐Emitting Diodes. Adv. Mater. 2019, 31, 1904319. [191] Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater, 2015, 27, 7162–7167. [192] Yang, Y.; Lin, L.; Jing, L.; Yue, X.; Dai, Z. CuInS2/ZnS Quantum Dots Conjugating Gd(III) Chelates for Near-Infrared Fluorescence and Magnetic Resonance Bimodal Imaging. ACS Appl. Mater. interfaces 2017, 9, 23450–23457. [193] Zhang, L.; Wang, D.; Hao, Z.; Zhang, X.; Pan, G. h.; Wu, H.; Zhang, J. Cr3+‐Doped Broadband NIR Garnet Phosphor with Enhanced Luminescence and Its Application in NIR Spectroscopy. Adv. Opt. Mater. 2019, 7, 1900185. [194] Qiao, J.; Zhou, G.; Zhou, Y.; Zhang, Q.; Xia, Z. Divalent Europium-Doped Near-Infrared-Emitting Phosphor for Light-Emitting Diodes. Nat. Commun. 2019, 10, 5267. [195] Song, E.; Jiang, X.; Zhou, Y.; Lin, Z.; Ye, S.; Xia, Z.; Zhang, Q. Heavy Mn2+ Doped MgAl2O4 Phosphor for High‐Efficient Near‐Infrared Light‐Emitting Diode and the Night‐Vision Application. Adv. Opt. Mater. 2019, 7, 1901105. [196] Zhang, M.; Zheng, W.; Liu, Y.; Huang, P.; Gong, Z.; Wei, J.; Gao, Y.; Zhou, S.; Li, X.; Chen, X. A New Class of Blue‐LED‐Excitable NIR‐II Luminescent Nanoprobes Based on Lanthanide‐Doped CaS Nanoparticles. Angew. Chem. Int. Ed. 2019, 58, 9556–9560. [197] Vasilopoulou, M.; Kim, H. P.; Kim, B. S.; Papadakis, M.; Ximim Gavim, A. E.; Macedo, A. G.; Jose da Silva, W.; Schneider, F. K.; Mat Teridi, M. A.; Coutsolelos, A. G. Efficient Colloidal Quantum Dot Light-Emitting Diodes Operating in the Second Near-Infrared Biological Window. Nat. Photonics 2020, 14, 50–56. [198] Wijaya, H.; Darwan, D.; Zhao, X.; Ong, E. W. Y.; Lim, K. R. G.; Wang, T.; Lim, L. J.; Khoo, K. H.; Tan, Z. K. Efficient Near‐Infrared Light‐Emitting Diodes Based on In(Zn)As–In(ZnPGaP–ZnS Quantum Dots. Adv. Funct. Mater. 2020, 30, 1906483. [199] Gong, X.; Yang, Z.; Walters, G.; Comin, R.; Ning, Z.; Beauregard, E.; Adinolfi, V.; Voznyy, O.; Sargent, E. H. Highly Efficient Quantum Dot Near-Infrared Light-Emitting Diodes. Nat. Photonics 2016, 10, 253–257. [200] Graf, A.; Murawski, C.; Zakharko, Y.; Zaumseil, J.; Gather, M. C. Infrared Organic Light‐Emitting Diodes with Carbon Nanotube Emitters. Adv. Mater. 2018, 30, 1706711. [201] Xia, C.; Winckelmans, N.; Prins, P. T.; Bals, S.; Gerritsen, H. C.; de Mello Donegá, C. Near-infrared-emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth. J. Am. Chem. Soc. 2018, 140, 5755–5763. [202] Liu, J.; Zhao, X.; Xu, H.; Wang, Z.; Dai, Z. Amino Acid-Capped Water-Soluble Near-Infrared Region CuInS2/ZnS Quantum Dots for Selective Cadmium Ion Determination and Multicolor Cell Imaging. Anal. Chem. 2019, 91, 8987–8993. [203] Huang, W.-T.; Chan, M.-H.; Chen, X.; Hsiao, M.; Liu, R. S. Theranostic Nanobubble Encapsulating a Plasmon-Enhanced Upconversion Hybrid Nanosystem for Cancer Therapy. Theranostics 2020, 10, 782. [204] Hong, G.; Antaris, A. L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1, 0010. [205] Lee, H. E.; Shin, J. H.; Park, J. H.; Hong, S. K.; Park, S. H.; Lee, S. H.; Lee, J. H.; Kang, I. S.; Lee, K. J. Micro Light‐Emitting Diodes for Display and Flexible Biomedical Applications. Adv. Funct. Mater. 2019, 29, 1808075. [206] Dai, X.; Deng, Y.; Peng, X.; Jin, Y. Quantum‐Dot Light‐Emitting Diodes for Large‐Area Displays: Towards the Dawn of Commercialization. Adv. Mater. 2017, 29, 1607022. [207] Song, W.-S.; Yang, H. Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots. Chem. Mater. 2012, 24, 1961–1967. [208] Chen, B.; Zhong, H.; Zhang, W.; Tan, Z.; Li, Y.; Yu, C.; Zhai, T.; Bando, Y.; Yang, S.; Zou, B. Highly Emissive and Color‐Tunable CuInS2‐Based Colloidal Semiconductor Nanocrystals: Off‐Stoichiometry Effects and Improved Electroluminescence Performance. Adv. Funct. Mater. 2012, 22, 2081–2088. [209] Zaiats, G.; Ikeda, S.; Kinge, S.; Kamat, P. V. Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels. ACS Appl. Mater. interfaces 2017, 9, 30741–30745. [210] Tong, X.; Kong, X. T.; Zhou, Y.; Navarro‐Pardo, F.; Selopal, G. S.; Sun, S.; Govorov, A. O.; Zhao, H.; Wang, Z. M.; Rosei, F. Near‐Infrared, Heavy Metal‐Free Colloidal “Giant” Core/Shell Quantum Dots. Adv. Energy Mater. 2018, 8, 1701432. [211] Tong, X.; Kong, X. T.; Wang, C.; Zhou, Y.; Navarro‐Pardo, F.; Barba, D.; Ma, D.; Sun, S.; Govorov, A. O.; Zhao, H. Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots. Adv. Sci. 2018, 5, 1800656. [212] Meinardi, F.; McDaniel, H.; Carulli, F.; Colombo, A.; Velizhanin, K. A.; Makarov, N. S.; Simonutti, R.; Klimov, V. I.; Brovelli, S. Highly Efficient Large-Area Colourless Luminescent Solar Concentrators Using Heavy-Metal-Free Colloidal Quantum Dots. Nat. Nanotechnol. 2015, 10, 878–885. [213] Yoon, S.-Y.; Kim, J.-H.; Jang, E.-P.; Lee, S.-H.; Jo, D.-Y.; Kim, Y.; Do, Y. R.; Yang, H. Systematic and Extensive Emission Tuning of Highly Efficient Cu–In–S-Based Quantum Dots from Visible to Near Infrared. Chem. Mater. 2019, 31, 2627–2634. [214] Berends, A. C.; Van Der Stam, W.; Hofmann, J. P.; Bladt, E.; Meeldijk, J. D.; Bals, S.; de Mello Donega, C. Interplay Between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals. Chem. Mater. 2018, 30, 2400–2413. [215] Gardelis, S.; Fakis, M.; Droseros, N.; Georgiadou, D.; Travlos, A.; Nassiopoulou, A. Energy Transfer in Aggregated CuInS2/ZnS Core-Shell Quantum Dots Deposited as Solid Films. J. Phys. D Appl. Phys. 2016, 50, 035107. [216] Kaile, K.; Godavarty, A. Development and Validation of a Smartphone-Based Near-Infrared Optical Imaging Device to Measure Physiological Changes In-Vivo. Micromachines 2019, 10, 180. [217] Pan, C.-T.; Francisco, M. D.; Yen, C.-K.; Wang, S.-Y.; Shiue, Y.-L. Vein Pattern Locating Technology for Cannulation: A Review of the Low-Cost Vein Finder Prototypes Utilizing Near Infrared (NIR) Light to Improve Peripheral Subcutaneous Vein Selection for Phlebotomy. Sensors 2019, 19, 3573. [218] Mela, C. A.; Lemmer, D. P.; Bao, F. S.; Papay, F.; Hicks, T.; Liu, Y. Real-Time Dual-Modal Vein Imaging System. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 203–213. [219] Knopman, D. S.; Amieva, H.; Petersen, R. C.; Chételat, G.; Holtzman, D. M.; Hyman, B. T.; Nixon, R. A.; Jones, D. T. Alzheimer Disease. Nat. Rev. Dis. Primers 2021, 7, 33. [220] Burns, A.; Iliffe, S. Dementia. BMJ 2009, 338, b75. [221] Venkataraman, A. V.; Mansur, A.; Rizzo, G.; Bishop, C.; Lewis, Y.; Kocagoncu, E.; Lingford-Hughes, A.; Huiban, M.; Passchier, J.; Rowe, J. B. Widespread Cell Stress and Mitochondrial Dysfunction Occur in Patients with Early Alzheimer’s Disease. Sci. Transl. Med. 2022, 14, eabk1051. [222] Roda, A. R.; Serra-Mir, G.; Montoliu-Gaya, L.; Tiessler, L.; Villegas, S. Amyloid-Beta Peptide and Tau Protein Crosstalk in Alzheimer’s Disease. Neural Regen. Res. 2022, 17, 1666. [223] Kiper, K.; Freeman, J. L. Use of Zebrafish Genetic Models to Study Etiology of the Amyloid-Beta and Neurofibrillary Tangle Pathways in Alzheimer's Disease. Curr. Neuropharmacol. 2022, 20, 524. [224] Ashrafian, H.; Zadeh, E. H.; Khan, R. H. Review on Alzheimer's Disease: Inhibition of Amyloid Beta and Tau Tangle Formation. Int. J. Biol. Macromol. 2021, 167, 382–394. [225] Weidling, I.; Swerdlow, R. H. Mitochondrial Dysfunction and Stress Responses in Alzheimer's Disease. Biology (Basel) 2019, 8, 39. [226] Melnikova, I. Therapies for Alzheimer's Disease. Nat. Rev. Drug Discov. 2007, 6, 341–342. [227] Grünblatt, E.; Homolak, J.; Babic Perhoc, A.; Davor, V.; Knezovic, A.; Osmanovic Barilar, J.; Riederer, P.; Walitza, S.; Tackenberg, C.; Salkovic-Petrisic, M. From Attention-Deficit Hyperactivity Disorder to Sporadic Alzheimer’s Disease—Wnt/mTOR Pathways Hypothesis. Front. Neurosci. 2023, 17, 1104985. [228] Mahase, E. Alzheimer’s Disease: FDA Approves Lecanemab Amid Cost and Safety Concerns. BMJ 2023, 380, p73. [229] Krauss, J. K.; Lipsman, N.; Aziz, T.; Boutet, A.; Brown, P.; Chang, J. W.; Davidson, B.; Grill, W. M.; Hariz, M. I.; Horn, A. Technology of Deep Brain Stimulation: Current Status and Future Directions. Nat. Rev. Neurol. 2021, 17, 75–87. [230] Koch, G.; Bonnì, S.; Pellicciari, M. C.; Casula, E. P.; Mancini, M.; Esposito, R.; Ponzo, V.; Picazio, S.; Di Lorenzo, F.; Serra, L. Transcranial Magnetic Stimulation of the Precuneus Enhances Memory and Neural Activity in Prodromal Alzheimer's Disease. Neuroimage 2018, 169, 302–311. [231] Zhang, Z.; Shen, Q.; Wu, X.; Zhang, D.; Xing, D. Activation of PKA/SIRT1 Signaling Pathway by Photobiomodulation Therapy Reduces Aβ Levels in Alzheimer's Disease Models. Aging Cell 2020, 19, e13054. [232] Foo, A. S. C.; Soong, T. W.; Yeo, T. T.; Lim, K.-L. Mitochondrial Dysfunction and Parkinson's Disease-Near-Infrared Photobiomodulation as a Potential Therapeutic Strategy. Front. Aging Neurosci. 2020, 12, 89. [233] Quirk, B. J.; Torbey, M.; Buchmann, E.; Verma, S.; Whelan, H. T. Near-Infrared Photobiomodulation in an Animal Model of Traumatic Brain Injury: Improvements at the Behavioral and Biochemical Levels. Photomed. Laser Surg. 2012, 30, 523–529. [234] Naeser, M. A.; Hamblin, M. R. Traumatic Brain Injury: A Major Medical Problem that Could be Treated Using Transcranial, Red/Near-Infrared LED Photobiomodulation. Photomed. Laser Surg. 2015, 33, 443–446. [235] Salehpour, F.; Cassano, P.; Rouhi, N.; Hamblin, M. R.; De Taboada, L.; Farajdokht, F.; Mahmoudi, J. Penetration Profiles of Visible and Near-Infrared Lasers and Light-Emitting Diode Light Through the Head Tissues in Animal and Human Species: A Review of Literature. Photobiomodul. Photomed. Laser Surg. 2019, 37, 581–595. [236] Grillo, S.; Duggett, N.; Ennaceur, A.; Chazot, P. Non-Invasive Infra-Red Therapy (1072 nm) Reduces β-Amyloid Protein Levels in the Brain of an Alzheimer’s Disease Mouse Model, TASTPM. J. Photochem. Photobiol. B, Biol. 2013, 123, 13–22. [237] Tao, L.; Liu, Q.; Zhang, F.; Fu, Y.; Zhu, X.; Weng, X.; Han, H.; Huang, Y.; Suo, Y.; Chen, L. Microglia Modulation with 1070-nm Light Attenuates Aβ Burden and Cognitive Impairment in Alzheimer’s Disease Mouse Model. Light Sci. Appl. 2021, 10, 179. [238] Chen, Q.; Wu, J.; Dong, X.; Yin, H.; Shi, X.; Su, S.; Che, B.; Li, Y.; Yang, J. Gut Flora-Targeted Photobiomodulation Therapy Improves Senile Dementia in an Aß-Induced Alzheimer's Disease Animal Model. J. Photochem. Photobiol. B, Biol. 2021, 216, 112152. [239] Blivet, G.; Meunier, J.; Roman, F. J.; Touchon, J. Neuroprotective Effect of a New Photobiomodulation Technique Against Aβ25-35 Peptide-Induced Toxicity in Mice: Novel Hypothesis for Therapeutic Approach of Alzheimer's Disease Suggested. Alzheimer's Dement.: Transl. Res. Clin. Interv. 2018, 4, 54–63. [240] Gerace, E.; Cialdai, F.; Sereni, E.; Lana, D.; Nosi, D.; Giovannini, M. G.; Monici, M.; Mannaioni, G. NIR Laser Photobiomodulation Induces Neuroprotection in an In Vitro Model of Cerebral Hypoxia/Ischemia. Mol. Neurobiol. 2021, 58, 5383-5395. [241] Yokomizo, S.; Kopp, T.; Roessing, M.; Morita, A.; Lee, S.; Cho, S.; Ogawa, E.; Komai, E.; Inoue, K.; Fukushi, M. Near-Infrared II Photobiomodulation Preconditioning Ameliorates Stroke Injury via Phosphorylation of eNOS. Stroke 2024. [242] Hamblin, M. R. Photobiomodulation for Traumatic Brain Injury and Stroke. J. Neurosci. Res. 2018, 96, 731-743. [243] Zhu, C.; Liu, Q. Review of Monte Carlo modeling of Light Transport in Tissues. J. Biomed. Opt. 2013, 18, 050902–050902. [244] Dogdas, B.; Stout, D.; Chatziioannou, A. F.; Leahy, R. M. A 3D Whole Body Mouse Atlas from CT and Cryosection Data. Phys. Med. Biol. 2007, 52, 577. [245] Yu, L.; Nina-Paravecino, F.; Kaeli, D.; Fang, Q. Scalable and Massively Parallel Monte Carlo Photon Transport Simulations Ffr Heterogeneous Computing Platforms. J. Biomed. Opt. 2018, 23, 010504. [246] Huang, L.-D.; Kao, T.-C.; Sung, K.-B.; Abraham, J. A. Simulation Study on the Optimization of Photon Energy Delivered to the Prefrontal Cortex in Low-Level-Light Therapy Using Red to Near-Infrared Light. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–10. [247] D’Hooge, R.; De Deyn, P. P. Applications of the Morris Water Maze in the Study of Learning and Memory. Brain Res. Rev. 2001, 36, 60–90. [248] Mendez, M. F. The Relationship Between Anxiety and Alzheimer's Disease. J. Alzheimer's Dis. 2021, 5, 171–177. [249] Palmqvist, S.; Schöll, M.; Strandberg, O.; Mattsson, N.; Stomrud, E.; Zetterberg, H.; Blennow, K.; Landau, S.; Jagust, W.; Hansson, O. Earliest Accumulation of β-Amyloid Occurs Within the Default-Mode Network and Concurrently Affects Brain Connectivity. Nat. Commun. 2017, 8, 1214. [250] Albrecht-Buehler, G. Rudimentary Form of Cellular "Vision". Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 8288–8292. [251] Popp, F. A.; Nagl, W.; Li, K.; Scholz, W.; Weingärtner, O.; Wolf, R. Biophoton Emission. New Evidence for Coherence and DNA as Source. Cell Biophys. 1984, 6, 33–52. [252] Wijk, R. V.; Wijk, E. P. V. An Introduction to Human Biophoton Emission. Forsch Komplementarmed Klass Naturheilkd. 2005, 12, 77–83. [253] Yuan, P.; Zhang, M.; Tong, L.; Morse, T. M.; McDougal, R. A.; Ding, H.; Chan, D.; Cai, Y.; Grutzendler, J. PLD3 Affects Axonal Spheroids and Network Defects in Alzheimer’s Disease. Nature 2022, 612, 328–337. [254] Pascher, T.; Chesick, J. P.; Winkler, J. R.; Gray, H. B. Protein Folding Triggered by Electron Transfer. Science 1996, 271, 1558–1560. [255] Buendía, D.; Guncay, T.; Oyanedel, M.; Lemus, M.; Weinstein, A.; Ardiles, Á. O.; Marcos, J.; Fernandes, A.; Zângaro, R.; Muñoz, P. The Transcranial Light Therapy Improves Synaptic Plasticity in the Alzheimer’s Disease Mouse Model. Brain Sci. 2022, 12, 1272. [256] Liebert, A.; Capon, W.; Pang, V.; Vila, D.; Bicknell, B.; McLachlan, C.; Kiat, H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023, 11, 237. [257] Pastore, M. G., S. Passarella, D. Specific Helium-Neon Laser Sensitivity of the Purified Cytochrome C Oxidase. Int. J. Radiat. Biol. 2000, 76, 863–870. [258] Hamblin, M. R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem. Photobiol. 2018, 94, 199–212. [259] Han, S.; Zhang, D.; Dong, Q.; Wang, X.; Wang, L. Deficiency in Neuroserpin Exacerbates CoCl2 Induced Hypoxic Injury in the Zebrafish Model by Increased Oxidative Stress. Front. Pharmacol. 2021, 12, 632662. [260] Tang, Y.; Hou, Y.; Zeng, Y.; Hu, Y.; Zhang, Y.; Wang, X.; Meng, X. Salidroside Attenuates CoCl2-Simulated Hypoxia Injury in PC12 Cells Partly by Mitochondrial Protection. Eur. J. Pharmacol. 2021, 912, 174617. [261] Hu, Y.; Nan, Y.; Lin, H.; Zhao, Q.; Chen, T.; Tao, X.; Ding, B.; Lu, L.; Chen, S.; Zhu, J. Celastrol Ameliorates Hypoxic-Ischemic Brain Injury in Neonatal Rats by Reducing Oxidative Stress and Inflammation. Pediatr. Res. 2024, 1–12. [262] Pan, Z.; Ma, G.; Kong, L.; Du, G. Hypoxia-Inducible Factor-1: Regulatory Mechanisms and Drug Development in Stroke. Pharmacol. Res. 2021, 170, 105742. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92898 | - |
dc.description.abstract | 近紅外光因其能量低,於不同領域上具其優勢,根據此區間之光學特性,衍伸出多元之應用。近紅外光可來自奈米粒子之放光或是發光二極體之放光,於此博士論文中,將探討近紅外光於植物與動物之間之作用及其延伸之應用。
於促進植物生長之應用中,先以近紅外光螢光粉摻雜之中孔洞二氧化矽奈米粒子作為一光捕獲奈米螢光肥料,進行近紅外光與植物光反應途徑之探索,此奈米螢光肥料具傳統螢光粉之特性並可被紫外光與可見光激發進而放射近紅外光。此放光位置橫跨光反應中心(PSI與PSII),可達艾默生協同效應並促進植物生長,經處理之組別其葉片較為茂盛與碩大,而鮮種增加17%,電子轉移速率增加高達100%。此奈米螢光肥料之近紅外光可同時作為生物標記訊號,進而確認此光反應作用位置於葉綠體。 為優化光反應途徑,近紅外光來源將變換為寬譜帶之紅光/近紅外光螢光粉轉化之發光二極體,此研究核心亦為艾默生協同效應,探討以不同半高寬之紅色螢光粉SrLiAl3N4:Eu2+與CaAlSiN3:Eu2+封裝於LED照明系統,於固定紅光強度下,植物生長與光量子通量密度成正相關,而光量子通量密度與半高寬亦成正相關。半高寬越寬之組別,其植株生長評估下,產量亦呈正相關。 於近紅外光應用於生物影像與治療上,寬譜帶之近紅外光量子點CuInS2/ZnS除具優異之量子效率與穩定性外,其奈米尺寸有利於微型發光二極體之封裝,增加裝置之可攜性與便利性。此量子點式微型發光二極體不僅達高功率與半高寬,其放光跨及(去氧)血紅蛋白之吸收波段,可應用於靜脈成像,凸顯此量子點應用於未來微型裝置之潛力。 為拓展近紅外光裝置之多元應用,將以非侵入式之光生物調節治療,應用於腦部疾病上,此包含阿茲海默症與腦中風。細胞色素氧化還原酶為粒線體中可有效吸收近紅外光能量之光感受器,此研究選定特定波長之發光二極體,藉其活化腦中線粒體,不僅提供一治療腦部疾病之非侵入性策略,更強調近紅外光裝置之光生物調節療法於臨床應用中之潛力。 | zh_TW |
dc.description.abstract | The near-infrared (NIR) region of the electromagnetic spectrum, owing to its low energy, offers distinct advantages across various domains. Exploiting the optical properties of this wavelength range, diverse applications have emerged. NIR light can originate from either the fluorescence of nanoparticles or light-emitting diodes (LEDs). In this doctoral thesis, the interactions and extended applications of NIR light between plants and animals will be explored.
In the context of promoting plant growth, the use of NIR fluorescent nanoparticles doped into mesoporous silica nanoparticles as a light-capturing nanofertilizer will be investigated. This nanofertilizer exhibits traditional fluorescent properties and can be excited by ultraviolet and visible light, resulting in the emission of NIR light. The emitted light spans the photosynthetic centers (PSI and PSII), invoking the Emerson effect and promoting plant growth. Lusher and larger leaves, along with a 17% increase in fresh yield and a 100% increase in electron transfer rates, are observed in the treated groups. Furthermore, the NIR light emitted by this nanofertilizer can serve as a biological marker, confirming its location within chloroplasts. To optimize the light reaction pathway, the NIR light source will be transitioned to broadband red light/NIR fluorescent powder-converted LEDs. The core of this study will also revolve around the Emerson effect. The use of different red fluorescent powders, such as SrLiAl3N4:Eu2+ and CaAlSiN3:Eu2+, encapsulated in LED lighting systems will be explored. Under fixed red light intensity, plant growth is positively correlated with light quantum flux density, which, in turn, is positively correlated with the full width at half-maximum (FWHM) of the red fluorescence powders. Groups with wider FWHM values exhibit higher plant yields. In the application of NIR light in biological imaging and therapy, wide-spectrum NIR quantum dots CuInS2/ZnS will be utilized due to their outstanding quantum efficiency and stability. Their nanoscale size allows them to be packaged into mini-LEDs, increasing portability and convenience. These quantum-dot-based mini-LEDs not only achieve high power and broad FWHM but also emit light across the (deoxy)hemoglobin absorption bands, enabling their use in vein imaging and highlighting their potential in future miniaturized devices. To expand the diverse applications of NIR light devices, non-invasive photobiomodulation therapy for brain diseases, including Alzheimer's disease and stroke, will be explored. Cytochrome C oxidase (CCO) is a light receptor in mitochondria, efficiently absorbing NIR light energy. Specific wavelength LEDs will be selected to activate brain mitochondria, providing a non-invasive strategy for treating brain diseases. This emphasizes the potential of NIR light devices in clinical applications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-03T16:10:51Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-03T16:10:51Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Contents
口試委員審定書 I 誌謝 II 摘要 III Abstract IV Figure Contents XII Table Contents XXI Abbreviations List XXII Chapter 1. Introduction 1 1.1 Near-Infrared Light 1 1.1.1 Categories 2 1.1.2 Light pathway and interaction with biological tissue 3 1.1.3 Near-infrared light technology 7 1.2 Pathways of Near-Infrared Applications 12 1.2.1 Light sources 13 1.2.2 Color conversion 14 1.2.3 Target matters 20 1.2.4 Functional near-infrared spectroscopy 20 1.3 Near-Infrared Light and Plants 25 1.3.1 Source of nutrients 26 1.3.2 Light effect 28 1.3.3 Photosystem centers 29 1.3.4 Light-harvesting nanofertilizer 32 1.3.5 Plant growth lighting 33 1.3.6 Other strategies for plant growth 39 1.4 Near-Infrared Light and Animals 40 1.4.1 Human-centric lighting 41 1.4.2 Photobiomodulation 42 1.4.3 Neuron and mitochondria regulation 48 1.5 Research Motivation 50 Chapter 2. Experimental Approaches and Techniques 52 2.1 Near-Infrared Phosphor Synthesis 52 2.1.1 Sintering methods 53 2.1.2 Experimental steps 53 2.2 Near-Infrared Nanophosphor Synthesis 55 2.2.1 Ship-in-a-bottle synthesis 55 2.2.2 Experimental steps 56 2.3 Near-Infrared Quantum Dot Synthesis 57 2.3.1 Colloidal synthesis 58 2.3.2 Experimental steps 59 2.4 Instruments for Material Characterization 60 2.4.1 X-ray diffractometer 60 2.4.2 Electron microscopy 64 2.4.3 X-ray absorption spectroscopy 68 2.4.4 Surface analysis 70 2.4.5 Optics spectroscopy 78 2.5 Instruments for Biological Analysis 84 2.5.1 Multimode microplate readers 85 2.5.2 Microscopy 86 2.5.3 Imaging system 89 Chapter 3. Near-Infrared Nanophosphor Embedded in Mesoporous Silica Nanoparticle with High Light-Harvesting Efficiency to Promote Dual Photosystem 91 3.1 Introduction 91 3.2 Experimental Section 92 3.2.1 Synthesis of mesoporous silica nanoparticle and nanophosphor 93 3.2.2 Plant growth conditions 93 3.2.3 Preparation of Hoagland solution 93 3.2.4 The calculation of chlorophyll content 94 3.2.5 The calculation of nitrate content 94 3.2.6 The plant tissue confocal slices 94 3.2.7 Mouse feeding and IVIS fluorescence model building 94 3.3 Results and Discussion 95 3.3.1 Crystal structure and morphological analysis 95 3.3.2 Optical analysis 97 3.3.3 Plant analysis 98 3.3.4 Animal evaluation 105 3.4 Summary 107 Chapter 4. Plant Growth Modelling and Response from Broadband Phosphor-Converted Lighting for Indoor Agriculture 108 4.1 Introduction 108 4.2 Experimental Section 110 4.2.1 Synthesis of SrLiAl3N4:Eu2+ 110 4.2.2 Synthesis of CaAlSiN3:Eu2+ 110 4.2.3 LED tube package 111 4.2.4 Plant growth conditions 111 4.2.5 Calculation of chlorophyll content 111 4.2.6 Calculation of nitrate content 111 4.3 Results and Discussion 112 4.3.1 Broadband red-NIR phosphor analysis 112 4.3.2 Phosphor-converted LED tube analysis 116 4.3.3 Plant growth evaluation 120 4.4 Summary 123 Chapter 5. Ultra-Broadband Near-Infrared Emission CuInS2/ZnS Quantum Dots with High Power Efficiency and Stability for the Theranostic Applications of Mini Light-Emitting Diodes 124 5.1 Introduction 124 5.2 Experimental Section 125 5.2.1 Synthesis of NIR-emitting CuInS2/ZnS quantum dots 126 5.3 Results and Discussion 126 5.3.1 NIR quantum dot characterization 126 5.3.2 NIR quantum dot mini-LED package 129 5.3.3 NIR mini-LED vein imaging 130 5.4 Summary 133 Chapter 6. Near-Infrared Photobiomodulation for Mitochondrial Targeting in Alzheimer’s Disease and Ischemic Stroke Treatments 134 6.1 Introduction 134 6.2 Experimental Section 137 6.2.1 LED information 137 6.2.2 Penetration ability measurement of NIR-LEDs 138 6.2.3 APPSwe/PS1dE9 transgenic mouse deeding (Alzheimer’s disease model) 138 6.2.4 Photobiomodulation for Alzheimer’s disease treament and behavior evaluation 138 6.2.5 Neuronal cell culture 139 6.2.6 Cell viability of photobiological safety 139 6.2.7 Genotype and phenotype characterization of APP/PS1 transgenic mouse 140 6.2.8 Cobalt chloride-induced hypoxia cell culture and photobiomodulation treatments 141 6.2.9 Establish photothrombosis stroke model 141 6.2.10 Photobiomodulation on photothrombosis stroke model 142 6.2.11 Brain slice with TTC staining 142 6.2.12 Histochemistry stain and immunohistochemistry 143 6.3 Results and Discussion 143 6.3.1 Near-infrared light penetration and nano-engineered device design 143 6.3.2 Improvement of cognitive impairment 147 6.3.3 Brain imaging analysis 150 6.3.4 Mitochondria-targeted mechanisms of NIR PBM 151 6.3.5 PBM for cobalt chloride-induced hypoxia environment 153 6.3.6 PBM for photothrombotic stroke model 155 6.4 Summary 157 Chapter 7. Conclusions 159 References 161 Thesis-Related Publications 187 Other Cooperated Publications 188 Patents 193 | - |
dc.language.iso | en | - |
dc.title | 應用於植物與動物之近紅外光與其奈米技術 | zh_TW |
dc.title | Near-Infrared Light and Nanotechnology in Plants and Animals | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 江建文;謝興邦;蕭宏昇;黃鵬林;杜宜殷;鍾仁傑 | zh_TW |
dc.contributor.oralexamcommittee | Kien Voon Kong;Hsing-Pang Hsieh;Michael Hsiao;Pung-Ling Huang;Yi-Yin Do;Ren-Jei Chung | en |
dc.subject.keyword | 近紅外光,植物之光反應中心,動物之粒線體,奈米粒子,發光二極體, | zh_TW |
dc.subject.keyword | near-infrared light,photosynthetic centers in plants,mitochondria in animals,nanoparticles,light-emitting diodes, | en |
dc.relation.page | 193 | - |
dc.identifier.doi | 10.6342/NTU202401306 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-06-25 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 17.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。