Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92889
標題: 匯總語義匹配檢索:透過開放式問題回答來釋放大型語言模型的能力
ASMR: Aggregated Semantic Matching Retrieval Unleashing the Ability of LLM through Open-Ended Question Answering
作者: 林珮盈
Pei-Ying Lin
指導教授: 許永真
Yung-jen Hsu
共同指導教授: 項潔
Jieh Hsiang
關鍵字: 大型語言模型,多選問答,語義匹配,推理,零樣本情境學習,提示工程,
Large Language Model,Multiple Choice Question Answering,Semantic Matching,Reasoning,Zero-shot In-context learning,Prompt Engineering,
出版年 : 2024
學位: 碩士
摘要: 雖然大型語言模型(LLMs)在許多自然語言處理任務中展示了出色的最新技術(SOTA)表現,但多選問答任務對於大型語言模型來說,仍然是一個挑戰。儘管通過利用少量樣本上下文學習,大型語言模型在多選問答任務上取得了不錯的成果。生成或選擇示範樣本並不是一項簡單的工作。在示範樣本的設計中必須考慮到許多因素,包括它們的順序、主要標籤和最近的標籤。最近有幾項研究專注於示範樣本的設計,以期望能達到更好的性能。因此,我們想知道如果不考慮示範樣本,我們如何通過零樣本學習來提高大型語言模型在多選推理任務中的性能?
當人們面臨多選推理任務時,我們通常依賴我們的先驗知識和常識來形成初步的答案。隨後,將這個初步答案與提供的選項進行比較,並選擇最有可能的選項作為最終答案。因此,我們提出聚合語義匹配檢索(ASMR)作為多選推理任務的解決方案。為了模仿人類解決多選推理任務的過程,我們利用大型語言模型的能力,首先通過開放式問題生成初步可能的答案,透過比較這個初步的答案與提供的選項,如此有助於從給定的選項中檢索出更有可能的答案選項。我們的實驗表明,ASMR在流行的常識推理資料集以及BIG-BENCH資料集上取得了良好的成果。
While Large Language Models (LLMs) have showcased remarkable state-of-the-art (SOTA) performance across numerous natural language processing tasks, their effectiveness in multiple-choice question answering tasks continues to pose a challenge. Although by utilizing few-shot in-context learning, LLMs have chieved impressive results on multiple choice question answering tasks. To generate or select of demonstration samples is not a simple work. Several factors must be taken into account during the design of demonstration samples, including their sequence, predominant label, and recentness label. There are several studies recently focus on the design of demonstration samples to achieve better performance. Therefore, We are wondering that without considering demonstration samples, how can we enhance the performance of Large Language Models on multiple-choice reasoning tasks through zero-shot learning?
When confronted with multiple-choice reasoning tasks, humans typically rely on their prior knowledge and commonsense to formulate a preliminary answer in mind. Subsequently, they compare this preliminary answer to the provided choices, and select the most likely choice as the final answer.We introduce Aggregated Semantic Matching Retrieval (ASMR) as a solution for multiple-choice reasoning tasks. To mimic the process of humans solving reasoning tasks with multiple choices, we leverage the capabilities of LLMs to first generate the preliminary possible answers through open-ended question which aids in enhancing the process of retrieving relevant answers to the question from the given choices. Our experiments demonstrate the effectiveness of ASMR on popular commonsense reasoning benchmark and BIG-BENCH datasets.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92889
DOI: 10.6342/NTU202401216
全文授權: 未授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
1.24 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved