Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92866
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱zh_TW
dc.contributor.advisorJungkai Alfred Chenen
dc.contributor.author張宏彬zh_TW
dc.contributor.authorHung-Pin Changen
dc.date.accessioned2024-07-02T16:21:36Z-
dc.date.available2024-07-03-
dc.date.copyright2024-07-02-
dc.date.issued2024-
dc.date.submitted2024-06-27-
dc.identifier.citation[AKMW02] Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), no. 3, 531–572. MR 1896232
[Bro99] Gavin Brown, Flips arising as quotients of hypersurfaces, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 1, 13–31. MR 1692523
[CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
[Dol03] Igor Dolgachev, Lectures on invariant theory, London Mathematical Society Lecture Note Series, vol. 296, Cambridge University Press, Cambridge, 2003. MR 2004511
[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. No. 52, Springer, 1977. MR 463157
[Kaw08] Yujiro Kawamata, Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 419–423. MR 2426353
[KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. MR 1658959
[Mat02] Kenji Matsuki, Introduction to the Mori program, Universitext, Springer, 2002. MR 1875410
[MFK94] David Mumford, John Fogarty, and Frances Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer, 1994. MR 1304906
[Mor85] Shigefumi Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43–66. MR 792770
[Muk03] Shigeru Mukai, An introduction to invariants and moduli, japanese ed., Cambridge Studies in Advanced Mathematics, vol. 81, Cambridge University Press, Cambridge, 2003. MR 2004218
[Rei87] Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414. MR 927963
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92866-
dc.description.abstractFlip 和 flop 是極小模型理論中非常重要的數學對象。但我們知道的 flip 和 flop 的具體例子卻很稀少。 Brown 使用幾何不變量理論有系統地構造了一系列的 flips:這些flip由 C5 中的超曲面的 GIT 商給出。本論文的主要目的是推廣 Brown 的構造。我們對 C6 中的四維代數簇的 GIT 商所導出的 flip 和 flop 進行了分類。同時,我們也證明了在 n ≥ 7 的時候 Cn 中的四維代數簇的 GIT 商所導出的 flip 和 flop 不會產生新的例子。zh_TW
dc.description.abstractFlips and flops play major roles in the minimal model program. However, there are few examples of flips and flops. Brown constructed a series of flips given by the GIT quotient of a hypersurface in C5. The main purpose of this thesis is to extend Brown’s construction. We classified flips and flops which are GIT quotient of complete intersection in C6. We also show that there are no more new examples as GIT quotient of complete intersection in Cn with n≥7.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:21:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-02T16:21:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 GIT construction 9
2.1 Geometric invariant theory . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 3 Numerical conditions 15
3.1 Contraction condition . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Intersection condition . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Singularity condition . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 4 Hypersurface 27
4.1 Flips for hypersurface (Brown’s case) . . . . . . . . . . . . . . . . . 27
4.2 Flops for hypersurface . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chapter 5 Codimension 2 33
5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Weight type (+, +, −, −, 0, 0; 0, 0) . . . . . . . . . . . . . . . . . . . 36
5.3 Weight type (+, +, +, −, −, 0; +, 0) . . . . . . . . . . . . . . . . . . 38
5.4 The rest weight types . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Chapter 6 Higher codimension 63
6.1 Codimension greater than 3 . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Codimesion 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Chapter 7 Discussions 71
References 73
-
dc.language.isoen-
dc.subject雙有理幾何zh_TW
dc.subject代數幾何zh_TW
dc.subject極小模型理論zh_TW
dc.subject奇異點zh_TW
dc.subject幾何不變量理論zh_TW
dc.subjectGeometric Invariant Theoryen
dc.subjectterminal singularityen
dc.subjectflopen
dc.subjectflipen
dc.subjectMinimal Model Programen
dc.subjectbirational geometryen
dc.subjectalgebraic geometryen
dc.title用幾何不變量理論構造flip以及flopzh_TW
dc.titleFlips and Flops Constructed by GIT Quotienten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林學庸;陳俊成;賴青瑞zh_TW
dc.contributor.oralexamcommitteeHsueh-Yung Lin;Jiun-Cheng Chen;Ching-Jui Laien
dc.subject.keyword代數幾何,雙有理幾何,極小模型理論,幾何不變量理論,奇異點,zh_TW
dc.subject.keywordalgebraic geometry,birational geometry,Minimal Model Program,flip,flop,terminal singularity,Geometric Invariant Theory,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202401352-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-28-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf549.5 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved