請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92820完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡彥卿 | zh_TW |
| dc.contributor.advisor | Yann-Ching Tsai | en |
| dc.contributor.author | 張祐誠 | zh_TW |
| dc.contributor.author | Yu-Cheng Chang | en |
| dc.date.accessioned | 2024-07-02T16:08:17Z | - |
| dc.date.available | 2024-07-03 | - |
| dc.date.copyright | 2024-07-02 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-19 | - |
| dc.identifier.citation | 張達元. (2023). 每股盈餘預測及套利投資策略探討-機器學習模型應用 國立台灣大學]. 台北市. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88135
Amel-Zadeh, A., Calliess, J.-P., Kaiser, D., & Roberts, S. (2020). Machine learning-based financial statement analysis. Available at SSRN 3520684. Arkan, T. (2016). The importance of financial ratios in predicting stock price trends: A case study in emerging markets. Finanse, Rynki Finansowe, Ubezpieczenia(79), 13-26. Ball, R., & Brown, P. (1968). An empirical evaluation of accounting income numbers. Journal of Accounting Research, 6(2), 159-178. Bird, R., Gerlach, R., & Hall, A. D. (2001). The prediction of earnings movements using accounting data: an update and extension of Ou and Penman. Journal of Asset Management, 2, 180-195. Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. Cao, K., & You, H. (2024). Fundamental analysis via machine learning. Financial Analysts Journal, 80(2), 74-98. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. Chen, X., Cho, Y. H., Dou, Y., & Lev, B. (2022). Predicting future earnings changes using machine learning and detailed financial data. Journal of Accounting Research, 60(2), 467-515. de Wet, J. (2013). Earnings per share as a measure of financial performance: does it obscure more than it reveals? De Wet, JH v H, 265-275. Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367-378. Hunt, J. O., Myers, J. N., & Myers, L. A. (2022). Improving earnings predictions and abnormal returns with machine learning. Accounting Horizons, 36(1), 131-149. Ohlson, J. A. (1995). Earnings, book values, and dividends in equity valuation. Contemporary Accounting Research, 11(2), 661-687. Ou, J. A., & Penman, S. H. (1989). Financial statement analysis and the prediction of stock returns. Journal of Accounting and Economics, 11(4), 295-329. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. Singh, G., & Thanaya, I. (2023). Predicting earnings per share using feature-engineered extreme gradient boosting models and constructing alpha trading strategies. International Journal of Information Technology, 15(8), 3999-4012. Taani, K. (2011). The effect of financial ratios, firm size and cash flows from operating activities on earnings per share:(an applied study: on Jordanian industrial sector). International Journal of Social Sciences and Humanity Studies, 3(1), 197-205. Zhou, X., Zhou, H., & Long, H. (2023). Forecasting the equity premium: Do deep neural network models work? Modern Finance, 1(1), 1-11. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92820 | - |
| dc.description.abstract | 本論文使用財務報表及財務比率建立三種訓練集,並透過隨機森林、梯度提升、極限梯度提升及深度神經網路四種演算法預測調整每股盈餘及調整稀釋每股盈餘,利用預測之調整每股盈餘及調整稀釋每股盈餘計算套利因子並建立投資組合,藉此驗證使用財務比率是否較使用財務報表有較佳之預測和套利能力。
結果發現隨機森林和梯度提升兩種演算法在預測調整每股盈餘及調整稀釋每股盈餘之能力較佳,且相較於使用財務報表,使用財務比率有較佳之預測能力。三種訓練集透過四種演算法所預測之調整每股盈餘及調整稀釋每股盈餘皆能建立具套利空間之投資組合,財務比率僅在應變數為調整每股盈餘,且利用隨機森林和梯度提升演算法進行預測時比使用財務報表有更佳之表現,這顯示出每股盈餘及調整稀釋每股盈餘之能力和套利報酬並非呈現完全正相關。另外,透過深度神經網路所建立之投資組合較其他演算法有較高之套利報酬。 | zh_TW |
| dc.description.abstract | This thesis uses financial statements and financial ratios to establish three types of training sets and employs four algorithms—Random Forest, Gradient Boosting, Extreme Gradient Boosting, and Deep Neural Networks—to predict adjusted earnings per share (EPS) and adjusted diluted EPS. The predicted adjusted EPS and adjusted diluted EPS are then used to calculate arbitrage factors and create investment portfolios. This thesis aims to verify whether using financial ratios provides better predictive and arbitrage capabilities compared to using financial statements.
The results indicate that the Random Forest and Gradient Boosting algorithms have superior predictive power for adjusted EPS and adjusted diluted EPS. Additionally, using financial ratios offers better predictive power than using financial statements. All three training sets with the four algorithms to predict adjusted EPS and adjusted diluted EPS can establish investment portfolios with arbitrage opportunities. Financial ratios demonstrate better performance than financial statements only when the dependent variable is adjusted EPS and predictions are made using the Random Forest and Gradient Boosting algorithms. This indicates that the capability to predict EPS and adjusted diluted EPS and the arbitrage returns are not perfectly positively correlated. Moreover, investment portfolios created through Deep Neural Networks exhibit higher arbitrage returns compared to those created by other algorithms. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-02T16:08:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-02T16:08:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
謝辭 ii 中文摘要 iii 英文摘要 iv 目次 v 圖次 vii 表次 x 第一章 緒論 1 第一節 研究動機與目標 1 第二節 研究架構 2 第二章 文獻回顧 3 第一節 預測每股盈餘與套利 3 第二節 機器學習與深度學習 4 第三章 研究及實證方法 8 第一節 變數與樣本 8 第二節 各情境下模型建立與評估方式 12 第三節 機器學習和深度學習參數調整 14 第四節 套利模型之建立 17 第四章 研究結果 21 第一節 探討不同演算法在各情境下之預測能力 21 第二節 探討不同情境在各演算法下之預測能力 24 第三節 探討不同演算法在各情境下之套利報酬 31 第四節 探討不同情境在各演算法下之套利報酬 44 第五節 探討具套利空間投資組合之各年度表現 51 第五章 結論與建議 56 第一節 研究結論 56 第二節 研究限制 57 第三節 研究建議 57 參考文獻 58 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 財務比率 | zh_TW |
| dc.subject | 套利 | zh_TW |
| dc.subject | 每股盈餘預測 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 財務報表 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | Earnings per Share Prediction | en |
| dc.subject | Machine Learning | en |
| dc.subject | Financial Statements | en |
| dc.subject | Arbitrage | en |
| dc.subject | Deep Learning | en |
| dc.subject | Financial Ratios | en |
| dc.title | 不同財務資訊對每股盈餘預測和套利報酬之比較- 機器學習模型應用 | zh_TW |
| dc.title | Comparison of Different Financial Information for Earnings per Share Prediction and Arbitrage Return - Application of Machine Learning Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 劉心才 | zh_TW |
| dc.contributor.coadvisor | Hsin-Tsai Liu | en |
| dc.contributor.oralexamcommittee | 李淑華;簡雪芳 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Hua Li;Hsueh-Fang Chien | en |
| dc.subject.keyword | 每股盈餘預測,財務比率,財務報表,機器學習,深度學習,套利, | zh_TW |
| dc.subject.keyword | Earnings per Share Prediction,Financial Ratios,Financial Statements,Machine Learning,Deep Learning,Arbitrage, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202401176 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-06-19 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 會計學系 | - |
| 顯示於系所單位: | 會計學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
