Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92809
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王振男zh_TW
dc.contributor.advisorJenn-Nan Wangen
dc.contributor.author林珈羽zh_TW
dc.contributor.authorJia-Yu Linen
dc.date.accessioned2024-07-01T16:12:44Z-
dc.date.available2024-07-02-
dc.date.copyright2024-07-01-
dc.date.issued2024-
dc.date.submitted2024-05-21-
dc.identifier.citation[1] Riesz-Fredhölm Theory, January 2014, Advanced Workshop on Computational Methods for Integral Equations and Applications, IIT Kanpur, Uttar Pradesh, 2014. Lecture Notes.

[2] G. S. Alberti and M. Santacesaria. Infinite-dimensional inverse problems with finite measurements. Archive for Rational Mechanics and Analysis, 243:1–31, 2022.

[3] L. Bourgeois. A remark on lipschitz stability for inverse problems. Comptes Rendus. Mathématique, 351(5-6):187–190, 2013.

[4] D. L. Colton, R. Kress, and R. Kress. Inverse acoustic and electromagnetic scattering theory, volume 93. Springer, 1998.

[5] T. Furuya and R. Potthast. Inverse medium scattering problems with kalman filter techniques. Inverse Problems, 38(9):095003, 2022.

[6] A. Kirsch. Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse problems, 15(2):413, 1999.

[7] A. Kirsch and L. Päivärinta. On recovering obstacles inside inhomogeneities. Math- ematical methods in the applied sciences, 21(7):619–651, 1998.

[8] P.-Z. Kow and J.-N. Wang. Reconstruction of an impenetrable obstacle in anisotropic inhomogeneous background. IMA Journal of Applied Mathematics, 86(2):320–348, 2021.

[9] M. Lee et al. Mathematical analysis and performance evaluation of the gelu activa- tion function in deep learning. Journal of Mathematics, 2023, 2023.

[10] A. Moiola. Scattering of time-harmonic acoustic waves: Helmholtz equation, boundary integral equations and bem. Lecture notes for the“Advanced numerical methods for PDEs"class, University of Pavia, Department of Mathematics, 2021.

[11] Z. Wei and X. Chen. Deep-learning schemes for full-wave nonlinear inverse scatter- ing problems. IEEE Transactions on Geoscience and Remote Sensing, 57(4):1849– 1860, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92809-
dc.description.abstract在本篇論文中,我們對確定非均質介質中的分段常數係數感興趣,這些係數來自於具有聲軟障礙的聲波散射,並已知障礙物的位置及其邊界條件。主要的想法是利用深度神經網絡(DNN),使用深層的全連接層和激活函數,將這些隱藏層疊加起來以模擬和學習數據的非線性特徵或更複雜的行為。我們首先使用前導向散射問題來計算,給予不同的非均勻介質係數推導出不同的總場,進而推出遠場模式。數據集由遠場模式和相應的非均質介質的分段常數係數組成。通過將數據分為訓練集、驗證集和測試集,我們進行監督學習來訓練模型。通過這個模型,我們可以從任何散射場的遠場模式中獲得非均質介質的分段常數係數。zh_TW
dc.description.abstractIn this thesis, we are interested in determining the piecewise constant coefficients of an inhomogeneous medium from acoustic wave scattering with sound-soft obstacles, given the positions of the obstacles and their boundary conditions. The main idea is to use a deep neural network (DNN), employing deep fully connected layers and activation functions, to stack these hidden layers in order to simulate and learn the nonlinear features or more complex behaviors of the data. We first use the forward scattering problem to calculate different total fields by varying the coefficients of the inhomogeneous medium, and deduce the far-field pattern. The dataset consists of the far-field patterns and the corresponding piecewise constant coefficients of the inhomogeneous medium. By dividing the data into training, validation, and testing sets, we conduct supervised learning to train the model. Through this model, we can obtain the piecewise constant coefficients of the inhomogeneous medium from any far-field pattern of the scattering field.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-01T16:12:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-01T16:12:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
Notation Index xv

Chapter 1 Introduction 1
1.1 Inverse Scattering Problem 1
1.2 Acoustic Scattering Problem 2
1.3 Deep Learning with Inverse Scattering Problem 8

Chapter 2 The direct acoustic scattering problem 9
2.1 The analytic theorem for the direct problem 9
2.2 The existence and uniqueness of the direct problem 15

Chapter 3 The inverse acoustic scattering problem 29
3.1 Introduction 29
3.2 The analytic theorem for the inverse problem 30

Chapter 4 Numerical Result 39
4.1 Introduction 39
4.2 Direct Numerical Method 39
4.2.1 Iterational Architecture 40
4.3 Inverse Numerical Method 43
4.3.1 Neural Network Architecture 43

Chapter 5 Conclusion 51
References 53
-
dc.language.isoen-
dc.subject分段常數係數zh_TW
dc.subject逆散射問題zh_TW
dc.subject遠場模式zh_TW
dc.subject深度學習zh_TW
dc.subject非均質介質zh_TW
dc.subjectInhomogeneous mediumen
dc.subjectDeep learningen
dc.subjectFar-field patternen
dc.subjectPiecewise constant coefficientsen
dc.subjectInverse scattering problemen
dc.title利用深度學習演算法預測分段常數函數的反散射問題zh_TW
dc.titleInverse scattering problem for piecewise constant coefficients using deep learning algorithmsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林景隆;邱普照;賴如育zh_TW
dc.contributor.oralexamcommitteeChing-Lung Lin;Pu-Zhao Kow;Ru-Yu Laien
dc.subject.keyword逆散射問題,分段常數係數,非均質介質,深度學習,遠場模式,zh_TW
dc.subject.keywordInverse scattering problem,Piecewise constant coefficients,Inhomogeneous medium,Deep learning,Far-field pattern,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202400954-
dc.rights.note未授權-
dc.date.accepted2024-05-21-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
7.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved