請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92809完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王振男 | zh_TW |
| dc.contributor.advisor | Jenn-Nan Wang | en |
| dc.contributor.author | 林珈羽 | zh_TW |
| dc.contributor.author | Jia-Yu Lin | en |
| dc.date.accessioned | 2024-07-01T16:12:44Z | - |
| dc.date.available | 2024-07-02 | - |
| dc.date.copyright | 2024-07-01 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-05-21 | - |
| dc.identifier.citation | [1] Riesz-Fredhölm Theory, January 2014, Advanced Workshop on Computational Methods for Integral Equations and Applications, IIT Kanpur, Uttar Pradesh, 2014. Lecture Notes.
[2] G. S. Alberti and M. Santacesaria. Infinite-dimensional inverse problems with finite measurements. Archive for Rational Mechanics and Analysis, 243:1–31, 2022. [3] L. Bourgeois. A remark on lipschitz stability for inverse problems. Comptes Rendus. Mathématique, 351(5-6):187–190, 2013. [4] D. L. Colton, R. Kress, and R. Kress. Inverse acoustic and electromagnetic scattering theory, volume 93. Springer, 1998. [5] T. Furuya and R. Potthast. Inverse medium scattering problems with kalman filter techniques. Inverse Problems, 38(9):095003, 2022. [6] A. Kirsch. Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse problems, 15(2):413, 1999. [7] A. Kirsch and L. Päivärinta. On recovering obstacles inside inhomogeneities. Math- ematical methods in the applied sciences, 21(7):619–651, 1998. [8] P.-Z. Kow and J.-N. Wang. Reconstruction of an impenetrable obstacle in anisotropic inhomogeneous background. IMA Journal of Applied Mathematics, 86(2):320–348, 2021. [9] M. Lee et al. Mathematical analysis and performance evaluation of the gelu activa- tion function in deep learning. Journal of Mathematics, 2023, 2023. [10] A. Moiola. Scattering of time-harmonic acoustic waves: Helmholtz equation, boundary integral equations and bem. Lecture notes for the“Advanced numerical methods for PDEs"class, University of Pavia, Department of Mathematics, 2021. [11] Z. Wei and X. Chen. Deep-learning schemes for full-wave nonlinear inverse scatter- ing problems. IEEE Transactions on Geoscience and Remote Sensing, 57(4):1849– 1860, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92809 | - |
| dc.description.abstract | 在本篇論文中,我們對確定非均質介質中的分段常數係數感興趣,這些係數來自於具有聲軟障礙的聲波散射,並已知障礙物的位置及其邊界條件。主要的想法是利用深度神經網絡(DNN),使用深層的全連接層和激活函數,將這些隱藏層疊加起來以模擬和學習數據的非線性特徵或更複雜的行為。我們首先使用前導向散射問題來計算,給予不同的非均勻介質係數推導出不同的總場,進而推出遠場模式。數據集由遠場模式和相應的非均質介質的分段常數係數組成。通過將數據分為訓練集、驗證集和測試集,我們進行監督學習來訓練模型。通過這個模型,我們可以從任何散射場的遠場模式中獲得非均質介質的分段常數係數。 | zh_TW |
| dc.description.abstract | In this thesis, we are interested in determining the piecewise constant coefficients of an inhomogeneous medium from acoustic wave scattering with sound-soft obstacles, given the positions of the obstacles and their boundary conditions. The main idea is to use a deep neural network (DNN), employing deep fully connected layers and activation functions, to stack these hidden layers in order to simulate and learn the nonlinear features or more complex behaviors of the data. We first use the forward scattering problem to calculate different total fields by varying the coefficients of the inhomogeneous medium, and deduce the far-field pattern. The dataset consists of the far-field patterns and the corresponding piecewise constant coefficients of the inhomogeneous medium. By dividing the data into training, validation, and testing sets, we conduct supervised learning to train the model. Through this model, we can obtain the piecewise constant coefficients of the inhomogeneous medium from any far-field pattern of the scattering field. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-01T16:12:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-01T16:12:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Notation Index xv Chapter 1 Introduction 1 1.1 Inverse Scattering Problem 1 1.2 Acoustic Scattering Problem 2 1.3 Deep Learning with Inverse Scattering Problem 8 Chapter 2 The direct acoustic scattering problem 9 2.1 The analytic theorem for the direct problem 9 2.2 The existence and uniqueness of the direct problem 15 Chapter 3 The inverse acoustic scattering problem 29 3.1 Introduction 29 3.2 The analytic theorem for the inverse problem 30 Chapter 4 Numerical Result 39 4.1 Introduction 39 4.2 Direct Numerical Method 39 4.2.1 Iterational Architecture 40 4.3 Inverse Numerical Method 43 4.3.1 Neural Network Architecture 43 Chapter 5 Conclusion 51 References 53 | - |
| dc.language.iso | en | - |
| dc.subject | 分段常數係數 | zh_TW |
| dc.subject | 逆散射問題 | zh_TW |
| dc.subject | 遠場模式 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 非均質介質 | zh_TW |
| dc.subject | Inhomogeneous medium | en |
| dc.subject | Deep learning | en |
| dc.subject | Far-field pattern | en |
| dc.subject | Piecewise constant coefficients | en |
| dc.subject | Inverse scattering problem | en |
| dc.title | 利用深度學習演算法預測分段常數函數的反散射問題 | zh_TW |
| dc.title | Inverse scattering problem for piecewise constant coefficients using deep learning algorithms | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林景隆;邱普照;賴如育 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Lung Lin;Pu-Zhao Kow;Ru-Yu Lai | en |
| dc.subject.keyword | 逆散射問題,分段常數係數,非均質介質,深度學習,遠場模式, | zh_TW |
| dc.subject.keyword | Inverse scattering problem,Piecewise constant coefficients,Inhomogeneous medium,Deep learning,Far-field pattern, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202400954 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-05-21 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 7.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
