Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92764
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭宇翔zh_TW
dc.contributor.advisorYu-Hsiang Chengen
dc.contributor.author鄭尹涵zh_TW
dc.contributor.authorYin-Han Chengen
dc.date.accessioned2024-06-21T16:09:25Z-
dc.date.available2024-06-22-
dc.date.copyright2024-06-21-
dc.date.issued2024-
dc.date.submitted2024-06-19-
dc.identifier.citation[1] Petrov, V., Kurner, T., & Hosako, I. "IEEE 802.15. 3d: First standardization efforts for sub-terahertz band communications toward 6G." IEEE Communications Magazine 58.11 (2020): 28-33.
[2] Weng, Z. K., et al. "Millimeter-wave and terahertz fixed wireless link budget evaluation for extreme weather conditions." IEEE Access 9 (2021): 163476-163491.
[3] Mittleman, D. ed. Sensing with terahertz radiation. Vol. 85. Springer (2013).
[4] Auston, D. H., et al. "Cherenkov radiation from femtosecond optical pulses in electro-optic media." Physical Review Letters 53.16 (1984): 1555.
[5] Beard, M. C., Gordon M. T., and Charles A. Schmuttenmaer. "Terahertz spectroscopy." The Journal of Physical Chemistry B 106.29 (2002): 7146-7159.
[6] Coutaz, J. L., Garet, F., and Wallace, V. Principles of Terahertz time-domain spectroscopy. CRC Press (2018).
[7] Bründermann, E., Hübers, H. W., Kimmitt, M. F., Bründermann, E., Hübers, H. W., and Kimmitt, M. F., Terahertz techniques. Vol. 151. Berlin: Springer (2012).
[8] Nuss, M. C., and Orenstein, J., "Terahertz time-domain spectroscopy." Millimeter and submillimeter wave spectroscopy of solids (2007): 7-50.
[9] Jepsen, P. U., Jacobsen, R. H., and Keiding, S. R., "Generation and detection of terahertz pulses from biased semiconductor antennas." JOSA B 13.11 (1996): 2424-2436.
[10] Smith, P. R., David H. A., and Martin C. N., "Subpicosecond photoconducting dipole antennas." IEEE Journal of Quantum Electronics 24.2 (1988): 255-260.
[11] Benicewicz, P. K., J. P. Roberts, and A. J. Taylor. "Scaling of terahertz radiation from large-aperture biased photoconductors." JOSA B 11.12 (1994): 2533-2546.
[12] Ung, B. S. Y., Novel hardware for terahertz time-domain spectroscopy (THz-TDS). Diss (2013).
[13] PCA - Photoconductive terahertz antenna [online]. https://www.batop.de/information/PCA_infos.html [Accessed 15 April 2024]
[14] Dorney, T. D., Baraniuk, R. G., and Mittleman, D. M., "Material parameter estimation with terahertz time-domain spectroscopy." JOSA A 18.7 (2001): 1562-1571.
[15] Duvillaret, L., Garet, F., and Coutaz, J. L. Coutaz. "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy." IEEE Journal of selected topics in quantum electronics 2.3 (1996): 739-746.
[16] Bernier, M., Garet, F., Coutaz, J. L., Minamide, H., and Sato, A., "Accurate characterization of resonant samples in the terahertz regime through a technique combining time-domain spectroscopy and Kramers–Kronig analysis." IEEE Transactions on Terahertz Science and Technology 6.3 (2016): 442-450.
[17] Duvillaret, L., Garet, F., and Coutaz, J. L., "Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy." Applied optics 38.2 (1999): 409-415.
[18] Van Exter, M., Fattinger, C., and Grischkowsky, D., "Terahertz time-domain spectroscopy of water vapor." Optics letters 14.20 (1989): 1128-1130.
[19] Blanchard, F., et al. "Generation of intense terahertz radiation via optical methods." IEEE Journal of Selected Topics in Quantum Electronics 17.1 (2010): 5-16.
[20] Aoki, K., Janne S., and Martina H., "Broadband terahertz pulse generation by optical rectification in GaP crystals." Applied Physics Letters 110.20 (2017).
[21] Buccheri, F., and Zhang, X. C., "Terahertz emission from laser-induced microplasma in ambient air." Optica 2.4 (2015): 366-369.
[22] Burford, N. M., and El-Shenawee, M. O., "Review of terahertz photoconductive antenna technology." Optical Engineering 56.1 (2017): 010901-010901.
[23] PCA - Photoconductive antenna [online].https://www.batop.de/products/terahertz/photoconductive-antenna/photoconductive-terahertz-antenna.html [Accessed 15 April 2024]
[24] 張鮮文, et al. "兆赫茲電磁輻射應用於單晶矽晶圓之穿透研究." 科儀新知 168 (2009): 69-81.
[25] Neu, J., and Schmuttenmaer, C. A., "Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS)." Journal of Applied Physics 124.23 (2018).
[26] Amplifier, DSP Lock-In. "MODEL SR830." Interface 4 (1993): 24.
[27] Jepsen, P. U., Cooke, D. G., and Koch, M., "Terahertz spectroscopy and imaging–Modern techniques and applications." Laser & Photonics Reviews 5.1 (2011): 124-166.
[28] Hall, S. H., and Heck, H. L., Advanced signal integrity for high-speed digital designs. John Wiley & Sons (2011).
[29] Permittivity – Wikipedia [online].https://en.wikipedia.org/wiki/Permittivity [Accessed 1 May 2024]
[30] Sólyom, J., "Optical properties of solids." Fundamentals of the Physics of Solids: Volume 2: Electronic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, (2009): 411-447.
[31] Djordjevic, A. R., Biljié, R. M., Likar-Smiljanic, V. D., and Sarkar, T. K. "Wideband frequency-domain characterization of FR-4 and time-domain causality." IEEE Transactions on electromagnetic compatibility 43.4 (2001): 662-667.
[32] Kanehara, K., Urata, S., Yasuhara, S., Tsurumi, T., and Hoshina, T., "Dielectric property and polarization mechanism of sodium silicate glass in GHz–THz range." Japanese Journal of Applied Physics 61.SN (2022): SN1001.
[33] Al-Omari, A. N., and Lear, K. L., "Dielectric characteristics of spin-coated dielectric films using on-wafer parallel-plate capacitors at microwave frequencies." IEEE Transactions on Dielectrics and Electrical Insulation 12.6 (2005): 1151-1161.
[34] Mandrić Radivojević, V., Rupčić, S., Srnović, M., & Benšić, G., "Measuring the dielectric constant of paper using a parallel plate capacitor." International journal of electrical and computer engineering systems 9.1 (2018): 1-10.
[35] Zhang, J., Koledintseva, M., Antonini, G., Drewniak, J., Orlandi, A., and Rozanov, K., "Planar transmission line method for characterization of printed circuit board dielectrics." Progress In Electromagnetics Research 102 (2010): 267-286.
[36] Juan, C. G., et al. "Dielectric characterization of water glucose solutions using a transmission/reflection line method." Biomedical Signal Processing and Control 31 (2017): 139-147.
[37] William, S. W., and S. Alberto. "Measurement of Dielectric Material Properties—Application Note." Rohde & Schwarz: Munich, Germany (2006).
[38] Krupka, J., et al. "Uncertainty of complex permittivity measurements by split-post dielectric resonator technique." Journal of the European Ceramic Society 21.15 (2001): 2673-2676.
[39] Rodriguez-Cano, R., Perini, S. E., Foley, B. M., and Lanagan, M., "Broadband characterization of silicate materials for potential 5G/6G applications." IEEE Transactions on Instrumentation and Measurement 72 (2023): 1-8.
[40] Ghodgaonkar, D. K., Vasundara V. V., and Varadan, V. K., "A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies." IEEE Transactions on Instrumentation and Measurement 38.3 (1989): 789-793.
[41] Liu, X., Lu G., and Bin Y., "Millimeter-wave free-space dielectric characterization." Measurement 179 (2021): 109472.
[42] Wang, Yi, et al. "Characterization of dielectric materials at WR-15 band (50–75 GHz) using VNA-based technique." IEEE Transactions on Instrumentation and Measurement 69.7 (2019): 4930-4939.
[43] MCK by Swissto12 [online].https://mck.swissto12.ch/ [Accessed 15 April 2024]
[44] Oberto, L., et al. "Measurement comparison among time-domain, FTIR and VNA-based spectrometers in the THz frequency range." Metrologia 54.1 (2017): 77.
[45] VERTEX 80/80v FT-IR Spectrometer | Bruker [online].https://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-ir-research-spectrometers/vertex-research-ft-ir-spectrometer/vertex-80-80v-ft-ir-spectrometer.html[Accessed 15 April 2024]
[46] Igawa, H., Tatsuya M., and Seiji K., "Terahertz time-domain spectroscopy of congruent LiNbO3 and LiTaO3 crystals." Japanese Journal of Applied Physics 53.5S1 (2014): 05FE01.
[47] Wang, Yi, et al. "Material measurements using VNA-based material characterization kits subject to thru-reflect-line calibration." IEEE Transactions on Terahertz Science and Technology 10.5 (2020): 466-473.
[48] RO4003C™ Laminates [online].https://www.rogerscorp.com/advanced-electronics-solutions/ro4000-series-laminates/ro4003c-laminates [Accessed 15 April 2024]
[49] Ruan, X., and Chan, C. H., "Terahertz free‐space dielectric property measurements using time‐and frequency‐domain setups." International Journal of RF and Microwave Computer‐Aided Engineering 29.9 (2019): e21839.
[50] RT/duroid® 6006 and 6010.2LM Laminates [online].https://www.rogerscorp.com/advanced-electronics-solutions/rt-duroid-laminates/rt-duroid-6006-and-6010-2lm-laminates [Accessed 15 April 2024]
[51] 南亞塑膠 | 電子材料[online].http://ccl.npc.com.tw/ccl/zh_TW/Product/Microwave.do [Accessed 15 April 2024]
[52] Hejase, J. A., Pavel R. P., and Chahal, P. P., "Terahertz characterization of dielectric substrates for component design and nondestructive evaluation of packages." IEEE Transactions on Components, Packaging and Manufacturing Technology 1.11 (2011): 1685-1694.
[53] Rovensky, T., Alena P., and Peter L., "Dielectric properties' homogeneity of various substrates in GHz area." 2018 41st International Spring Seminar on Electronics Technology (ISSE). IEEE (2018).
[54] Carter, J., et al. "Terahertz Properties of Common Microwave Dielectric Materials." Journal of Infrared, Millimeter, and Terahertz Waves 44.11 (2023): 873-884.
[55] Ghalichechian, N., and Kubilay S., "Permittivity and loss characterization of SU-8 films for mmW and terahertz applications." IEEE Antennas and Wireless Propagation Letters 14 (2014): 723-726.
[56] EAGLE XG_PI Sheet_2021 [online].https://www.corning.com/media/worldwide/cdt/documents/EAGLE%20XG_PI%20Sheet_2021.pdf [Accessed 15 April 2024]
[57] ROHACELL Dielectric Properties EN EN Asset 1255254[online].https://products.evonik.com/assets/52/54/ROHACELL_Dielectric_Properties_EN_EN_Asset_1255254.pdf [Accessed 15 April 2024]
[58] Non-haloganated Low CTE BT Resin Laminate for IC Plastic Packages | Business & Products | Mitsubishi Gas Chemical Company, Inc. [online].https://www.mgc.co.jp/eng/products/sc/btprint/lineup/hfbt.html [Accessed 15 April 2024]
[59] Ismail, K., et al. "Microwave characterization of silicon wafer using rectangular dielectric waveguide." 2006 International RF and Microwave Conference. IEEE, (2006).
[60] Chudpooti, N., et al. "Wideband dielectric properties of silicon and glass substrates for terahertz integrated circuits and microsystems." Materials Research Express 8.5 (2021): 056201.
[61] Bolivar, P. H., et al. "Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies." IEEE Transactions on Microwave Theory and Techniques 51.4 (2003): 1062-1066.
[62] Fast, D. B., et al. "Wire-grid THz polarizers manufactured by laser micromachining of metal films on a polymer membrane." 2011 International Conference on Infrared, Millimeter, and Terahertz Waves. IEEE, 2011.
[63] Abraham, J. (2023). CNC vs Laser Cutter: Differences Explained-MellowPine [online].https://mellowpine.com/cnc/cnc-vs-laser-cutter/#differences-between-a-cnc-and-a-laser-cutter [Accessed 15 April 2024]
[64] Huang, Z., et al. "Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach." IEEE Photonics Technology Letters 25.1 (2012): 81-84.
[65] 李勁. "基於 CNC 及雷射加工技術之太赫茲被動元件." 臺灣大學電信工程學研究所學位論文 2023 (2023): 1-101.
[66] Wlodarczyk, K. L., et al. "Interlaced laser beam scanning: a method enabling an increase in the throughput of ultrafast laser machining of borosilicate glass." Journal of Manufacturing and Materials Processing 3.1 (2019): 14.
[67] Meng, F., et al. "The design of the sub-wavelength wire-grid polarizer." 2007 7th IEEE Conference on Nanotechnology (IEEE NANO). IEEE (2007).
[68] Yan, F., et al. "Advances in polarizer technology for terahertz frequency applications." Journal of infrared, millimeter, and terahertz waves 34 (2013): 489-499.
[69] Anwar, R. S., Mao, L. and Ning, H., "Frequency selective surfaces: A review." Applied Sciences 8.9 (2018): 1689.
[70] Tao, H., et al. "Recent progress in electromagnetic metamaterial devices for terahertz applications." IEEE Journal of Selected Topics in Quantum Electronics 17.1 (2010): 92-101.
[71] Chen, H. T., O’Hara, J. F., Taylor, A. J., Averitt, R. D., Highstrete, C., Lee, M., and Padilla, W. J., "Complementary planar terahertz metamaterials." Optics express 15.3 (2007): 1084-1095.
[72] Zhou, J. Study of left-handed materials. Iowa State University (2008).
[73] Katsarakis, N., Koschny, T., Kafesaki, M., Economou, E. N., and Soukoulis, C. M., “Electric coupling to the magnetic resonance of split ring resonators,” Applied Physics Letters 84(15), 2943–2945 (2004).
[74] Zhou, J., Koschny, T., and Soukoulis, C. M., "Magnetic and electric excitations in split ring resonators." Optics express 15.26 (2007): 17881-17890.
[75] Chen, H. T., et al. "Complementary planar terahertz metamaterials." Optics express 15.3 (2007): 1084-1095.
[76] Falcone, F., et al. "Babinet principle applied to metasurface and metamaterial design." Phys. Rev. Lett 93.12 (2004): 197491-1.
[77] Samanta, S. K., R. Pradhan, and D. Syam. "Theoretical approach to verify the resonance frequency of a square split ring resonator." JOSA B 38.10 (2021): 2887-2897.
[78] Peretti, R., et al. "THz-TDS time-trace analysis for the extraction of material and metamaterial parameters." IEEE transactions on Terahertz Science and Technology 9.2 (2018): 136-149.
[79] Ferraro, A., et al. "Broad-and narrow-line terahertz filtering in frequency-selective surfaces patterned on thin low-loss polymer substrates." IEEE Journal of selected topics in quantum electronics 23.4 (2017): 1-8.
[80] Ferraro, A., et al. "Angle-resolved and polarization-dependent investigation of cross-shaped frequency-selective surface terahertz filters." Applied Physics Letters 110.14 (2017).
[81] Rockstuhl, C., et al. "Resonances in complementary metamaterials and nanoapertures." Optics express 16.3 (2008): 2080-2090.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92764-
dc.description.abstract本論文旨在研究太赫茲時域光譜技術,該原理是透過飛秒近紅外脈衝照射在光導天線上形成電子電洞對,再利用外加偏壓來加速電子電洞對的移動,形成瞬態電流,並產生太赫茲波。為了進行檢測,太赫茲脈衝與另一個近紅外脈衝重疊,並通過掃描近一端光路的延遲,記錄下太赫茲脈衝時間分辨的電場,最後透過傅立葉轉換得到樣品的光譜。利用模型比較穿過樣品與未穿過樣品的電場,可以測量太赫茲頻率範圍內材料的折射率與吸收係數,進而推倒介電常數與介電損耗。在架設太赫茲時域光譜系統後,為了驗證系統性能,吾人量測水線去比對標準的水線吸收頻,觀察系統的靈敏度,以及對照其他文獻量測材料的折射率與介電常數,來驗證吾人建立的系統。
本文第一部分主要介紹太赫茲時域光譜技術,分析各種參數的設定,來提升系統性能,提高訊雜比與動態範圍,其中訊雜比為60 dB,可用頻寬約0.1至1 THz。第二部分透過折射率回推材料的介電常數與介電損耗,並彙整許多材料的介電特性。由廠商提供的低頻板材介電參數透過Debye模型推出高頻的介電常數與損耗(其滿足因果性),並與量測結果做比對。第三部分透過雷射雕刻機雕刻偏振片,可客製約10至50 dB的消光比與穿透率75%以上的太赫茲偏振片。為了再提升消光比,提出雙層偏振片的結構,透過模擬觀察其消光比相較單層偏振片提高20 dB。此外,也透過雷射雕刻出線寬50 μm的簡單圖形超表面材料,包含方形分裂環共振器與十字型開槽結構作為濾波器,最後使用太赫茲時域光譜量測穿透光譜來驗證特性。在分裂環共振器的量測結果中,可以看到多個共振頻,從軟體模擬電場和表面電流可以看到隨著共振數目的增加,兩個振幅中都會出現一個額外的節點,並且產生180度的相位變,皆與理論相符。
zh_TW
dc.description.abstractThe purpose of this thesis is to study terahertz time-domain spectroscopy (THz-TDS). The principle involves using femtosecond near-infrared pulses to illuminate a photoconductive antenna, generating electron-hole pairs. These pairs are then accelerated by an applied bias, forming a transient current that produces terahertz waves. For detection, the terahertz pulses overlap with another near-infrared pulse, and by scanning the delay of the optical path on one end, the time-resolved electric field of the terahertz pulses is recorded. Finally, the sample’s spectrum is obtained through Fourier transform. By comparing the electric fields passing through the sample and without the sample, the refractive index and absorption coefficient of materials in the terahertz frequency range can be measured, leading to the derivation of dielectric constants and dielectric losses. After setting up the terahertz time-domain spectroscopy system, to verify its performance, we measured the water line to compare it with standard water absorption frequencies, observing the system''s sensitivity. Additionally, we compared the measured refractive indices and dielectric constants of materials with those reported in other literature to validate our established system.
The first part of this paper mainly introduces the terahertz time-domain spectroscopy technique, analyzing various parameter settings to improve system performance, enhance signal-to-noise ratio (SNR), and increase dynamic range. The SNR is 60 dB, and the usable bandwidth is approximately 0.1 to 1 THz. The second part involves deriving the dielectric constants and loss tangents of materials through their refractive indices and compiling the dielectric properties of various materials. Using the dielectric parameters in low-frequency provided by manufacturers, we extrapolated the high-frequency dielectric constants and losses through the Debye model (satisfying causality) and compared them with our measurement results. The third part involves using a laser engraving machine to fabricate polarizers, achieving customized terahertz polarizers with extinction ratios of approximately 10 to 50 dB and transmittance above 75%. To further enhance the extinction ratio, a bilayer polarizer structure is proposed, which, through simulations, shows an improvement of 20 dB in extinction ratio compared to single-layer polarizers. Additionally, simple metasurface materials with 50 μm linewidths, including square split-ring resonators and cross-shaped slot structures, were engraved using the laser and used as filters. The transmission spectrum was measured using terahertz time-domain spectroscopy to verify their characteristics. In the measurement results of the split-ring resonators, multiple resonant frequencies were observed. From the software-simulated electric field and surface current, it was evident that with an increase in the number of resonances, an additional node appeared in both amplitude curves, producing a 180-degree phase change, consistent with theoretical predictions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-21T16:09:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-21T16:09:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目 次 vi
圖 次 ix
表 次 xiii
第1章 緒論 1
1.1 太赫茲輻射簡介 1
1.2 研究動機 3
1.3 論文貢獻 4
1.4 章節概述 5
第2章 太赫茲時域光譜基本理論 6
2.1 歷史 6
2.2 原理 7
2.2.1 模型 9
2.2.2 參數理論與影響 11
2.3 架設 21
2.3.1 架構 22
2.3.2 飛秒雷射 24
2.3.3 光電導天線 24
2.3.4 物鏡與離軸拋物面鏡 28
2.3.5 鎖相放大器 30
2.3.6 其他元件與儀器 31
2.4 應用特性 31
第3章 板材 33
3.1 介電質特性簡介 33
3.2 Lorentz oscillator model 35
3.3 Debye方程式 36
3.4 介電質實部虛部關係 37
3.5 材料介電特性量測方法 38
3.6 不同板材特性 41
3.7 材料參數量測 44
第4章 製程 58
4.1 PET薄膜 58
4.2 雷射雕刻簡介 59
4.2.1 雷射直寫加工技術 60
4.2.2 雷射雕刻機 60
第5章 太赫茲元件 67
5.1 線柵偏振片 67
5.1.1 偏振片設計 67
5.1.2 量測與討論 71
5.2 超穎材料 74
5.2.1 SRR設計 74
5.2.2 十字孔徑設計 82
5.2.3 量測與討論 83
第6章 結論與未來展望 89
參考文獻 90
附錄A. 反射式THz-TDS 99
A.1 T-spin 99
A.2 THz-TDRS模型 102
A.3 參考文獻 102
-
dc.language.isozh_TW-
dc.subject雷射直寫技術zh_TW
dc.subject分裂環共振器zh_TW
dc.subject超表面zh_TW
dc.subject太赫茲時域光譜zh_TW
dc.subject材料特性zh_TW
dc.subjectMetasurfacesen
dc.subjectMaterial propertiesen
dc.subjectSplit-ring resonatoren
dc.subjectLaser direct writingen
dc.subjectTerahertz time-domain spectroscopyen
dc.title太赫茲波段材料量測與超穎表面設計zh_TW
dc.titleMaterial characterization and metasurface design in the terahertz banden
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧信嘉;溫昱傑zh_TW
dc.contributor.oralexamcommitteeHsin-Chia Lu;Yu-Chieh Wenen
dc.subject.keyword太赫茲時域光譜,材料特性,雷射直寫技術,超表面,分裂環共振器,zh_TW
dc.subject.keywordTerahertz time-domain spectroscopy,Material properties,Laser direct writing,Metasurfaces,Split-ring resonator,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202401218-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-06-20-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2029-06-17-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
8.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved