請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92729
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄧茂華 | zh_TW |
dc.contributor.advisor | Mao-Hua Teng | en |
dc.contributor.author | 楊智淵 | zh_TW |
dc.contributor.author | Chih Yuan Yang | en |
dc.date.accessioned | 2024-06-17T16:07:04Z | - |
dc.date.available | 2024-06-18 | - |
dc.date.copyright | 2024-06-17 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-03-30 | - |
dc.identifier.citation | [1] R. P. Feynman, “There’s a plenty of room at the bottom,” Engineering and Science, 1960, 23(5), 22-36.
[2] M. S. Whittingham, “History, Evolution, and Future Status of Energy Storage,” Proceedings of the IEEE, 2012, vol. 100, 1518-1534, [3] R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, “A review of advanced and practical lithium battery materials,” Journal of Materials Chemistry, 2011, 21(27), 9938-9954. [4] M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, and Z. Ogumi, “Carbon-coated Si as a lithium-ion battery anode material.” Journal of The Electrochemical Society, 2002, 149(12), A1598-A1603. [5] M. Ko, S. Chae and J. Cho, “Challenges in accommodating volume change of Si anodes for Li‐ion batteries,” ChemElectroChem, 2015, 2(11), 1645-1651. [6] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia and X. He, “Thermal runaway mechanism of lithium ion battery for electric vehicles: A review,” Energy storage materials, 2018, 10, 246-267. [7] Y. Xu, G. Yin, Y. Ma, P. Zuo and X. Cheng, “Nanosized core/shell silicon@ carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source,” Journal of Materials Chemistry, 2010, 20(16), 3216-3220. [8] 陳志穎(2020)“合成石墨包裹矽奈米顆粒之初步研究”,碩士論文,國立台灣大學地質科學系,共93頁。 [9] S. Seraphin, D. Zhou and J. Jiao, “Filling the carbon nanocages,” Journal of applied physics, 1996, 80(4), 2097-2104. [10] V. V. Pokropivny and V. V. Skorokhod, “Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science,” Materials Science and Engineering: C, 2007, 27(5-8), 990-993. [11] C. Kittel, “Introduction to. solid state physics (8th edition),” U.S.A.: John Wiley and Sons, 1994. [12] C. M. Lai and S. L. Lee, “Novel effects and applications of nanometer materials,” Chemistry (The Chinese Chem. Soc., Taipei), 2003, 61(4), 585-597. [13] A. S. Edelstein and R. C. Cammarata, “Synthesis, properties, and applications,” Nanomaterials, 1998, Boca Raton, U.S.A.: CRC Press. [14] R. Kubo, “Electronic properties of metallic fine particles I,” J. Phys. Soc. Jpn., 1965, 17(6), 975-986. [15] Z. H. Loh, A. K. Samamta, and P. W. S. Heng, “Review: overview of milling techniques for improving the solubility of poorly water-soluble drugs,” Asian J. Pharm. Sci., 2015, 10(4), 255-274. [16] M. S. El-Eskandarany, “Mechanical Alloying: Energy Storage,” Protective Coatings, and Medical Applications. William Andrew, 2020. [17] U. Schubert and N. Hüsing, “Synthesis of inorganic materials (3rd edition),” Weinheim, Germany: Wiley-VCH, 2012. [18] D. Bokov, A. T. Jalil, S. Chupradit, W. Suksatan, M. J. Ansari, I. H. Shewael, G.H. Valiev and E. Kianfar, “Nanomaterial by sol-gel method: synthesis and application,” Advances in Materials Science and Engineering, 2021 ,2021, 1-21. [19] C.G. Granqvist and R.A. Buhrman, “Ultrafine metal nanoparticles”, J. Appl. Phys., 1976, 47 (5), 2200-2216. [20] M. Tomita, Y. Saito and T. Hayashi, “LaC2 encapsulated in graphite nano-particle,” Jap. J. Appl. Phys., 1993, 32, L280-282. [21] R. S. Ruff, D.C. Lorents, R. Malhotra and S. Subramoney, “Single crystal metals encapsulated in carbon nanoparticles,” Science, 1993, 259, 602-604. [22] H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, 1985, 318, 162-163. [23] L. Porto, D. Silva, A .de Oliveira, A. Pereira, and K. Borges, “Carbon nanomaterials: synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest,” Reviews in Analytical Chemistry, 2019, 38(3), 20190017. [24] W. Krätschmer, Lowell D. Lamb, K. Fostiropoulos and Donald R. Huffman, “Solid C60: a new form of carbon,” Nature, 1990, 347, 354-358. [25] J. Yan, Z. Fan and L. Zhi, “Polymer Science: A Comprehensive Reference volume 8,” 2012, 439-478. [26] V. P. Dravid, J. J. Host, M. H. Teng, B. E. J. Hung, D. L. Johnson, T. O. Manson and J. R. Weertman, “Controlled-sized nanocapsules,” Nature, 1995, 602. [27] J. J. Host, M. H. Teng, B. R. Elliot and J. H. Hwang, “Graphite encapsulated nanocrystals produced using low carbon: metal ratio,” J. Mater. Res., 1996,12(5), 1268-1273. [28] S. J. Lee, J. J. Jung, M. A. Kim, Y. R. Kim and J. K. Park, “Synthesis of highly stable graphite-encapsulated metal (Fe, Co and Ni) nanoparticles,” J. Mater. Sci., 2012, 47(23), 8112-8117. [29] J. Borysiuk, A. Grabias, J. Szezytko, M. Bystrzejewski, A. Twardowski and H. Lange, “Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis,” Carbon, 2008, 46(13), 1693-1701. [30] U. Narkiewicz and M. Podsiadly, "Synthesis of carbon-encapsulated nickel nanoparticles," Applied Surface Science, 2010, 256(17), 5249-5253. [31] S. Seraphin, D. Zhou, J. Jiao, M. A. Minke, S. Wang, T. Yadav, and J. C.Withers, “Catalytic role of nickel, palladium and platinum in the formation of carbon nanoclusters,” Chem. Phys. Lett., 1994, 217(3), 191-195. [32] C. Guerret-Piecourt, Y. Lebouar and H. Pascard, “Felation between metal electronic structure and morphology of metal compounds inside carbon nanotubes,” Nature, 1994, 372(6508), 761-765. [33] B. R. Elliot, J. J. Host, V. P. Dravid, M. H. Teng and J. H. Hwang, “A descriptive model linking possible formation mechanisms for graphite encapsulated nanocrystals to processing parameters,” J. Mater. Res., 1997, 12(12), 3328-3344. [34] H. Okamoto and T. B. Massalski, "Binary Alloy Phase Diagrams, 2nd edition," ASM International, 1990. [35] T. J. Konno and R. Sinclair, "Crystallization of amorphous carbon in carbon cobalt layered thin films," Acta. Meta;. Mater., 1995, 43(2), 471-484. [36] 林沛彥(1999)“石墨包裹奈米晶粒材料與機械設計”,學士論文,國立臺灣大學地質科學系,共72頁。 [37] 林春長(2002)“石墨包裹奈米鈷晶粒之純化研究”,碩士論文,國立臺灣大學地質科學系,共 126頁。 [38] 黃郁傑(2018)“以電弧法合成石墨包裹鍠奈米晶粒並探討有機物埶裂解反應對產物之影響研究”,碩士論文,國立臺灣大學地質科學系,共129頁。 [39] 張麗娟(1999)“石墨包裹奈米鎳晶粒的純化分離效果初步研究”,碩士論文,國立臺灣大學地質科學系,共140頁。 [40] 羅仁傑(2010) “石墨包裹奈米鐵晶粒的合成方法改進研究:石墨坩堝設計”,碩士論文,國立臺灣大學地質科學糸,共71頁。 [41] 李雱雯(2013)“以退火政善石墨包裹奈米鐵晶粒之包裹良率”,碩士論文,國立臺灣大學地質科學系,共75頁。 [42] 蕭崇毅(2006)“合成石墨包裹奈米金屬晶粒製程中熔融金屬內碳原料變化之初步研究”,碩士論文,國立臺灣大學地質科學系,共87頁。 [43] J. C. Lo, J. C. Lu and M. H. Teng, “A new crucible design of the arc-discharge method for synthesis of graphite encapsulated metal (GEM)nanoparticles,” Diam. Relat. Mater., 2011, 20, 330-333. [44] 鄭啟輝(2002)“用 電弧法在甲烷與氦氣混合氣體中合成石墨包裹奈米鎳晶粒之初步結果”,碩士論文,國立臺灣大學地質科學系,共69頁。 [45] M. H. Teng S. W. Tsai, C. I. Hsiao, Y. D. Chen, “Using diamond as a metastable phase carbon source to facilitate the synthesis of graphite encapsulated metal (GEM) nanoparticles by an arc-discharge method,” J. Alloys Compd., 2007, 434-435, 678-681. [46] C. C. Chiu, J. C. Lo and M. H. Teng, "A novel of high efficiency method for the synthesis of graphite encapsulated metal (GEM) nanoparticles," Diam. Relat. Mater., 2012, 24, 179-183. [47] 蔡敦皓(2019)“在電弧系統中以苯蒸氣碳源合成石墨包裹奈米金屬顆粒”,碩士論文,國立臺灣大學地質科學糸,共120頁。 [48] J. Zhou, Y. Lan, K. Zhang, G. Xia, J. Du, Y. Zhu, and Y. Qian, “In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries,” Nanoscale, 2016, 8(9), 4903-4907. [49] T. Xu, D. Wang, P. Qiu, J. Zhang, Q. Wang, B. Xia, and X. Xie, “In situ synthesis of porous Si dispersed in carbon nanotube intertwined expanded graphite for high-energy lithium-ion batteries,” Nanoscale, 2018, 10(35), 16638-16644. [50] T. Zhang, L. Fu, J. Gao, L. Yang, Y. Wu and H. Wu, “Core-shell Si/C nanocomposite as anode material for lithium ion batteries,” Pure and applied chemistry, 2006, 78(10), 1889-1896. [51] Y. Hwa, W. S. Kim, S. H. Hong and H. J. Sohn, “High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries,” Electrochimica Acta, 2012, 71, 201-205. [52] J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porcher, C. Haon, A. Bordes, E. De Vito, A. Boulineau, S. J. S. Larbi, N. Herlin-Boime and C. Reynaud, “One-step synthesis of Si@ C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries,” ACS applied materials & interfaces, 2015, 7(12), 6637-6644. [53] Z. Fisk and G. W. Webb, “Treatise on Materials Science and Technology: Materials Science Series,” Vol. 21, Elsevier, 1981. [54] W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves and D. L. McElroy, “Thermal conductivity, electrical resistivity, and Seebeck coefficient of silicon from 100 to 1300°K,” Phys. Rev. 167, 1968, 765. [55] 李尚實(2015)“石墨包裹奈米鐵晶粒的純化及表面改質程序之研究”,博士論文,國立臺灣大學地質科學系,共153頁。 [56] B. S. Xakalashe and M. Tangstad, “Silicon processing: from quartz to crystalline silicon solar cells,” Chem Technol, 2012, (April), 32-7. [57] V. I. Mikla, V. V. Mikla, “Medical imaging Technology (1st edition),” Elsevier, 2013. [58] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction (3rd edition),” New Jersey, U.S.A.: Prentice Hall, 2001. [59] 鮑忠興、劉思謙(2012),近代穿透式電子顯微鏡實務(第二版),艙海書局。 [60] T. Kimoto, J. A. Cooper, “Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications,” 2014, John Wiley & Sons. [61] J. A. Barnard and H. W. D. Hughes, “The pyrolysis of n-propanol,” Transactions of the Faraday Society, 1960, 56, 64-71. [62] D. W. Hess, “Thermal Oxidation of Silicon,” Chemical Engineering Education, 1990, 24(1), 34-37. [63] C. Li, C. Liu, K. Ahmed, Z. Mutlu, Y. Yan, I. Lee, M. Ozkan and C. S. Ozkan, “Kinetics and electrochemical evolution of binary silicon–polymer systems for lithium ion batteries,” RSC advances, 2017, 7(58), 36541-36549. [64] J. Quanli, Z. Haijun, L. Suping and J. Xiaolin, “Effect of particle size on oxidation of silicon carbide powders,” Ceramics international, 2007, 33(2), 309-313. [65] M. C. Martinez, E. J. Munoz, M. B. Dickerson, R. Arroyave and M. Radovic, “Nucleation and growth of SiC at the interface between molten Si and graphite,” Ceramics International, 2023, 49(12), 20041-20050. [66] 蕭敦仁(2005)“石黑包裹奈米鎳晶粒在高溫高壓下合成鑽石的初步探討之純化研究”,碩士論文,國立臺灣大學地質科學系,共83頁。 [67] 陳永得(2006)“以人造鑽石及噴氣式電弧法合成石墨包裹奈米鐵晶粒之初步結果”,碩士論文,國立臺灣大學地質科學糸,共88頁。 [68] 李尚實(2006)“不同粒徑大小的石墨包裹奈米鎳晶粒在NP-9膠體系統中之分散研究”,碩士論文,國立臺灣大學地質科學系,共95頁。 [69] 蔡少葳(2007)“石墨包裹奈米鎳晶粒的緻密化之初步研究”,碩士論文,國立臺灣大學地質科學系,共75頁。 [70] 蕭淵隆(2010)“甲醇之蒸散速率效應對石墨包裹奈米鎳晶粒緻密化之研究”,碩士論文,國立臺灣大學地質科學系,共76頁。 [71] 呂睿晟(2011)“非鐵磁性石墨包裹奈米晶粒合成方法之初步研究”,碩士論文,國立臺灣大學地質科學糸,共80頁。 [72] 邱志成(2012)“以高合成效率的製程方法合成石墨包裹奈米鐵、鈷、鎳以及銅晶粒之初歩研究”,碩士論文,國立臺灣大學地質科學糸,共105頁。 [73] 許舜婷(2016)“輸入微量液態碳源對合成石墨包裹奈米鎳晶粒及電弧型熊轉變之研究”,碩士論文,國立臺灣大學地質科學系,共75頁。 [74] 林宏益(2016)“電弧法合成石墨包裹奈米鎳晶粒-使用不同含碳量之液態碳源對於包裹良率變化的研究”,碩士論文,國立臺灣大學地質科學系,共79頁。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92729 | - |
dc.description.abstract | 石墨包裹矽奈米顆粒(Graphite Encapsulated Silicon nanoparticles, GES)是一種內核為矽或碳化矽晶粒、外殼為非晶質碳或是石墨層之奈米複合材料。GES具有作為鋰離子電池陽極的潛力,內核矽或碳化矽之儲電量約為常見石墨電極的3至10倍,但電池充放電過程中,鋰離子會與矽結成Li15Si4合金,造成體積膨脹3至4倍,而石墨外殼具有良好導電性與延展性,在增加導電度的同時,也能有效限縮矽材料因充放電所造成的體積膨脹,延長電池使用壽命。
本團隊於2020年成功以改良式鎢電弧法合成GES,然而產物中碳化矽比例過高,由於碳化矽之儲電量僅為矽的三分之一倍,會造成GES的儲電量下降;另外,過去製程產量過低,導致難以進行後續量化分析與實務應用之研究。因此,本研究目的在於減少GES產物中的碳化矽比例與試圖提高產量。 從碳-矽二元相圖與文獻回顧發現,控制系統碳含量能有效限制碳化矽的生成,透過比較反應式的自由能高低發現,若系統中含有氧則能降低碳之比例,因此加入一定比例的石英粉末於經過改良之坩堝配置中,於電弧中心提供氧原子,以限制碳化矽的生成反應,並且也能作為矽的來源。根據實驗產物之XRD分析結果,產物中的碳化矽繞射峰強度有明顯下降,顯示石英粉末能有效限制碳化矽生成;透過HRTEM影像分析得知GES的核心為矽單晶或單晶碳化矽,並統計影像中矽核心GES與碳化矽核心GES之數量比為2:1,相對於前人研究之1:9,石英粉末能大幅減少產物中碳化矽比例。此外,透過本研究之製程改良能有效提升GES產量約10倍以上,解決前人產量不足的問題。最後綜合實驗結果提出GES的生成機制模型,說明系統在不同碳含量下,GES可能的生成路徑與結構,且能針對前人研究無法解釋的部分給予合理的解釋。 | zh_TW |
dc.description.abstract | Graphite Encapsulated Silicon nanoparticles (GES) are core-shell nanocomposite materials with a silicon (Si) or silicon carbide (SiC) core and an outer shell of amorphous carbon or graphite. GES has the potential to be used as the anode material for lithium-ion batteries. The electrical capacity of the Si or SiC core in GES is approximately 3 to 10 times higher than that of conventional graphite electrodes. However, during the charging/discharging process, lithium ions react with silicon to form Li15Si4 alloy, resulting in a 3 to 4 times volume expansion. The graphite shell exhibits excellent electrical conductivity and ductility, which not only increases the electrode’s conductivity but also effectively restricts the volume expansion of the Si core during charging/discharging, thereby extending the battery’s lifespan.
In 2020, our group successfully synthesized GES by modified tungsten arc- discharge method. Nevertheless, the product contained a high proportion of SiC, which caused a decreased electrical capacity since the electrical capacity of SiC is only one-third of the electrical capacity compared to Si. Additionally, the low production rate in the past made it difficult to do subsequent quantitative analysis and research on practical applications. Therefore, the purpose of this study is to reduce the proportion of SiC in the GES product and attempt to increase the production rate. Based on the carbon-silicon binary phase diagram and literature reviews, it was found that controlling the carbon content in the system can effectively limit the formation of SiC. By comparing with the Gibbs free energy of the reactions, it was observed that the presence of oxygen in the system can decrease the proportion of carbon. Consequently, by adding a certain proportion of quartz powder to the improved crucible setup, which provides oxygen atoms at the center of the arc limits the formation of SiC and also serves as a silicon source. XRD analysis of the experimental products showed a significant decrease in the intensity of the SiC diffraction peak, indicating that the quartz powder can effectively limit the formation of SiC. HRTEM images revealed that the core of GES consists of single crystal Si or single crystal SiC. Quantitative analysis of the TEM images showed a ratio of 2:1 between GES with Si core and GES with SiC core, which is in comparison to the 1:9 in the previous study. It indicated that quartz powder can significantly reduce the proportion of SiC in the product. In addition, the process improvement in this study increased the production rate of GES by more than about 10-fold, which resolved the problem of low production rate in previous study. Finally, based on the experimental results, we proposed a model to explain the formation mechanism of GES. This model describes the possible formation pathways and structures of GES, providing reasonable explanations for some aspects that couldn’t be explained in previous study. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-17T16:07:04Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-06-17T16:07:04Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目次 v 圖目次 viii 表目次 xii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 3 1.3 章節內容 3 第二章 文獻回顧 5 2.1 奈米材料 5 2.1.1 奈米材料之特殊效應 6 2.1.2 奈米材料的合成 9 2.2 石墨包裹金屬奈米晶粒(GEM) 12 2.2.1 石墨包裹奈米顆粒之發展史 13 2.2.2 改良式鎢電弧法(Modified Tungsten Arc-Discharge Method) 15 2.2.3 石墨包裹奈米顆粒之合成機制 17 2.3 本團隊在石墨包裹金屬奈米晶粒之研究發展 21 2.3.1 機械設計 22 2.3.2 產物後處理 23 2.3.3 產物熱處理 23 2.3.4 坩堝設計改良 24 2.3.5 碳源選擇 25 2.4 石墨包裹矽奈米晶粒(GES) 26 2.4.1 其他學者對於石墨包裹矽奈米晶粒之研究 26 2.4.2 本團隊於石墨包裹矽奈米晶粒之研究發展 29 2.4.3 碳熱還原法(Carbonthermic Reduction Method) 32 第三章 實驗方法與流程 33 3.1 實驗相關設備 33 3.1.1 真空電弧蒸發裝置 33 3.1.2 電弧系統 34 3.1.3 冷卻系統 35 3.1.4 電源供應系統 36 3.2 實驗流程 37 3.2.1 實驗原料來源 37 3.2.2 實驗配置 38 3.2.3 產物的收集與分散 40 3.3 分析儀器 40 3.3.1 X光粉末繞射儀(X-ray powder diffractometer, XRD) 41 3.3.2 高分辨解析率穿透式電子顯微鏡(High resolution transmission electron microscopy, HRTEM) 43 3.3.3 掃描式電子顯微鏡(Scanning electron microscope, SEM) 44 3.3.4 熱重分析儀(Thermogravimetric analysis, TGA) 46 第四章 結果與討論 47 4.1 抑制碳化矽的生成 47 4.1.1 系統中的碳含量 48 4.1.2 碳熱還原法(Carbonthermic reduction method)的啟發 49 4.1.3 自由能數據與石英粉末假說 49 4.2 實驗設計改良與初步結果討論 52 4.2.1 碳源選擇與固態原料晶相分析 53 4.2.2 坩堝內配置與初步結果 56 4.3 儀器分析結果 75 4.3.1 XRD晶相分析 75 4.3.2 電子顯微鏡影像分析 77 4.3.3 GES的熱重分析(Thermogravimetric analysis, TGA) 92 4.4 GES的機制模型 97 4.4.1 GES可能的生成路徑 97 4.4.2 GES生成路徑模型與前人研究之探討 99 第五章 結論與未來建議 101 5.1 結論 101 5.2 未來建議 102 參考文獻 103 附錄A 110 | - |
dc.language.iso | zh_TW | - |
dc.title | 以石英粉末輔助合成石墨包裹矽奈米顆粒之初步研究 | zh_TW |
dc.title | Preliminary Study on the Synthesis of Graphite Encapsulated Silicon Nanoparticles with Quartz Powder | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 謝文斌;李尚實;陳卉君 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Pin Hsieh;Shang-Shih Li ;Hui-Chun Chen | en |
dc.subject.keyword | 核-殼結構,碳化矽,石英粉末,物理氣相沉積,鋰離子電池, | zh_TW |
dc.subject.keyword | core-shell structure,silicon carbide,quartz powder,PVD,lithium-ion battery, | en |
dc.relation.page | 111 | - |
dc.identifier.doi | 10.6342/NTU202304216 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-03-30 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 37.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。