Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92718
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈俊嚴zh_TW
dc.contributor.advisorChun-Yen Shenen
dc.contributor.author王健安zh_TW
dc.contributor.authorJian-An Wangen
dc.date.accessioned2024-06-13T16:11:38Z-
dc.date.available2024-06-14-
dc.date.copyright2024-06-13-
dc.date.issued2024-
dc.date.submitted2024-06-11-
dc.identifier.citation[1] T. Bloom and T. G. F. Jones. A sum-product theorem in function fields, 2013.
[2] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications. International Journal of Number Theory, 1(01):1–32, 2005.
[3] J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in finite fields, and applications. Geometric & Functional Analysis GAFA, 14(1):27–57, 2004.
[4] G. Elekes. On the number of sums and products. Acta Arithmetica, 81(4):365–367, 1997.
[5] P. Erdös. On sets of distances of n points. The American Mathematical Monthly, 53(5):248–250, 1946.
[6] M. Z. Garaev. An explicit sum-product estimate in Fp, 2007.
[7] M. Z. Garaev and C.-Y. Shen. On the size of the set a(a+1), 2008.
[8] L.GuthandN.H.Katz. On the erdős distinct distances problem in the plane.Annals of mathematics, pages 155–190, 2015.
[9] T. G. F. Jones. New quantitative estimates on the incidence geometry and growth of finite sets, 2013.
[10] B.Murphy,G.Petridis,T.Pham,M.Rudnev,andS.Stevens.Onthepinneddistances problem in positive characteristic. Journal of the London Mathematical Society, 105(1):469–499, 2022.
[11] G.Petridis.New proofs of plünnecke-type estimates for product sets in groups,2011.
[12] C.-Y.Shen.Onthesumproductestimatesandtwovariablesexpanders.Publicacions Matemàtiques, pages 149–157, 2010.
[13] J. Solymosi. On sum-sets and product-sets of complex numbers. Journal de théorie des nombres de Bordeaux, 17(3):921–924, 2005.
[14] A. V. Sutherland. 9 local fields and hensel’s lemmas. 2019.
[15] E. Szemerédi and W. T. Trotter. Extremal problems in discrete geometry. Combinatorica, 3:381–392, 1983.
[16] T. Tao and V. H. Vu. Additive combinatorics, volume 105. Cambridge University Press, 2006.
[17] C. D. Tóth. The szemerédi-trotter theorem in the complex plane. Combinatorica, 35(1):95–126, feb 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92718-
dc.description.abstract對於任意無有限子環的體,我們首先建立一個精確的 Bourgain-Katz-Tao 點線 重合上界。再者,在非阿基米德局部體上,我們給出一個強加乘集界。最後,結合前面兩種結果,我們證明一個非阿基米德局部體平面上的點線重合上界。

除此之外,應用我們證明的點線重合界,能夠探討非阿基米德局部體上的相異距離問題與擴展者問題。
zh_TW
dc.description.abstractFirst, we establish an explicit upper bound for the Bourgain-Katz-Tao’s point-line incidence theorem over fields without any finite subrings. Second, we obtain a stronger sum-product bound over non-archimedean local fields. Furthermore, by combining the previous two results, we prove an upper bound for point-line incidence over non-archimedean local fields.

As an application, we use our incidence bounds to study the distinct distance problem and the expander problems over non-archimedean local fields.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-13T16:11:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-13T16:11:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 (Page iii)
Abstract (Page v)
Contents (Page vii)
Chapter 1 Introduction (Page 1)
1.1 Background............................... 1
Chapter 2 Main Results (Page 3)
2.1 First Result............................... 3
2.1.1 Main Tools .............................. 4
2.1.2 Main Lemmas............................. 5
2.1.3 Proof of the First Result........................ 7
2.2 Second Result.............................. 15
2.2.1 Main Tools .............................. 16
2.2.2 Main Lemmas............................. 19
2.2.3 Proof of the Second Result ............................. 28
2.3 Main Result............................... 29
Chapter 3 Applications (Page 31)
3.1 Distinct Distance Problem ....................... 31
3.1.1 Isotropic Vectors ........................... 32
3.1.2 A Lower Bound on the Pinned Distance . . . . . . . . . . . . . . . 35
3.2 Expanders Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Via the Point-Line Incidence ..................... 41
3.2.2 Via the Stronger Sum-Product Theorem . . . . . . . . . . . . . . . 47
References (Page 49)
-
dc.language.isoen-
dc.subject加乘集界zh_TW
dc.subject點線重合zh_TW
dc.subject局部體zh_TW
dc.subject非阿基米德zh_TW
dc.subjectNon-Archimedeanen
dc.subjectLocal Fieldsen
dc.subjectSum-Product Bounden
dc.subjectPoint-Line Incidenceen
dc.title非阿基米德局部體上的點線重合界zh_TW
dc.titleA Point-Line Incidence Bound over Non-Archimedean Local Fieldsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林延輯;俞韋亘zh_TW
dc.contributor.oralexamcommitteeYen-chi Roger Lin;Wei-Hsuan Yuen
dc.subject.keyword點線重合,加乘集界,非阿基米德,局部體,zh_TW
dc.subject.keywordPoint-Line Incidence,Sum-Product Bound,Non-Archimedean,Local Fields,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202401132-
dc.rights.note未授權-
dc.date.accepted2024-06-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved