請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92715完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡克銓 | zh_TW |
| dc.contributor.advisor | Keh-Chyuan Tsai | en |
| dc.contributor.author | 余可佳 | zh_TW |
| dc.contributor.author | Passakorn Kamolamnuaykit | en |
| dc.date.accessioned | 2024-06-13T16:10:39Z | - |
| dc.date.available | 2024-06-14 | - |
| dc.date.copyright | 2024-06-13 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-06-12 | - |
| dc.identifier.citation | 1. Chopra, A. K. (2007). Dynamics of Structures—Theory and Applications to Earthquake Engineering (3rd edition). NJ, USA: Pearson Prentice Hall.
2. Lin, J.-L., & Tsai, K.-C. (2007). "Simplified Seismic Analysis of Asymmetric Building Systems." Earthquake Engineering and Structural Dynamics, 36, 459-479. 3. Lin, J.-L., & Tsai, K.-C. (2008). "Seismic Analysis of Two-Way Asymmetric Building Systems Under Bidirectional Seismic Ground Motions." Earthquake Engineering and Structural Dynamics, 37, 305-328. 4. Kasai, K., & Yu, M. (2022). "8th Asia Conference on Earthquake Engineering (8ACEE)." National Center for Research on Earthquake Engineering (NCREE), Taipei, Taiwan, November 9-11. 5. Dimopoulos, A., Tzimas, A., Karavasilis, T., & Vamvatsikos, D. (2016). "Probabilistic Economic Seismic Loss Estimation in Steel Buildings Using Post-Tensioned Moment-Resisting Frames and Viscous Dampers." Earthquake Engineering & Structural Dynamics, 45, 1725-1741. 6. Rosman, R. (1967). "Laterally Loaded Systems Consisting of Walls and Frames." In Tall Buildings (pp. 273-289). London, England: Pergamon Press Ltd. 7. Heidebrecht, A. C., & Smith, B. S. (1973). "Approximate Analysis of Tall Wall-Frame Structures." Journal of the Structural Division, 99, 199-221. 8. Lin, J.-L. (2019). "Approximate Quantification of Higher-Mode Effects on Seismic Demands of Buildings." International Journal of Structural Stability and Dynamics, 19, 1950023. 9. Lin, J.-L., Dai, J.-Y., & Tsai, K.-C. (2019). "Optimization Approach to Uniformly Distributed Peak Interstory Drifts Along Building Heights." Journal of Structural Engineering, 145(5), 04019032. 10. Lin, J.-L., & Chuang, M.-C. (2023). "Simplified Nonlinear Modeling for Estimating the Seismic Response of Buildings." Engineering Structures, 279, 115590. 11. Miranda, E., & Taghavi, S. (2005). "Approximate Floor Acceleration Demands in Multistory Buildings. I: Formulation." Journal of Structural Engineering, 131(2), 203-211. 12. Hibbeler, R. C. (2012). Structural Analysis (8th ed.). Upper Saddle River, NJ: Prentice-Hall. 13. Lin, J.-L., Bui, M.-T., & Tsai, K.-C. (2014). "An Energy-Based Approach to the Generalized Optimal Locations of Viscous Dampers in Two-Way Asymmetrical Buildings." Earthquake Spectra, 30(2), 867-889. 14. Maniatakis, C., Psycharis, I., & Spyrakos, C. (2013). "Effect of Higher Modes on the Seismic Response and Design of Moment-Resisting RC Frame Structures." Engineering Structures, 56, 417-430. 15. Li, J., Wang, W., Kusunoki, K., Maida, Y., & Wang, Z. (2023). "A Simplified Analysis Method for Estimating the Peak Responses of Recentering Structures with Viscous Damping Systems." Earthquake Engineering and Structural Dynamics, 1-24. 16. Dall′Asta, A., Tubaldi, E., & Ragni, L. (2015). "Influence of the Nonlinear Behavior of Viscous Dampers on the Seismic Demand Hazard of Building Frames." Earthquake Engineering and Structural Dynamics, 45, 145-169. 17. Lin, W.-H., & Chopra, A. K. (2001). "Understanding and Predicting Effects of Supplemental Viscous Damping on Seismic Response of Asymmetric One-Storey Systems." Earthquake Engineering and Structural Dynamics, 30, 1475-1494. 18. Pekcan, G., Mander, J. B., & Chen, S. S. (1999). "Fundamental Considerations for the Design of Non-Linear Viscous Dampers." Earthquake Engineering and Structural Dynamics, 28, 1405-1425. 19. FEMA-355C (2000). "State of the Art Report on Systems Performance of Steel Moment Frames Subject to Earthquake Ground Shaking." Prepared by the SAC Joint Venture for the Federal Emergency Management Agency. 20. Lin, B.-Z., Chuang, M.-C., & Tsai, K.-C. (2009). "Object-Oriented Development and Application of a Nonlinear Structural Analysis Framework." Advances in Engineering Software, 40, 66-82. 21. Tsai, K.-C., & Lin, B.-Z. (2003). "Development of an Object-Oriented Nonlinear Static and Dynamic 3D Structural Analysis Program." Report no. CEER-92-04. Taipei, Taiwan: Center for Earthquake Engineering Research, National Taiwan University. 22. FEMA-354 (2000). "A Policy Guide to Steel Moment-Frame Construction." Prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC. 23. UBC (Uniform Building Code) (1994). "Structural Engineering Design Provisions." Vol. 2 of Uniform Building Code. Whittier, CA: International Conference of Building Officials. 24. Federal Emergency Management Agency, FEMA-356 (2000). "Prestandard and Commentary for Seismic Rehabilitation of Buildings." Washington, DC. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92715 | - |
| dc.description.abstract | 本研究提出了一種針對含黏滯阻尼器之建築受震反應分析的創新方法,藉由將黏滯阻尼器的特性納入廣義建築模型(GBM)中,擴展了簡化建模的適用性。本研究引入了一種靈活且高效的方法,其特點在於使用單一參數α來定義建築總體變形型式,並且不受建築特性的限制。此外,採用單位脈衝法來決定線性和非線性黏滯阻尼器在廣義建築模型中的最佳參數,並且證明此一方法的有效性與阻尼器配置的模式無關。本研究證明所提出的方法對於線性黏滯阻尼器可以獲得滿意的結果,但同時也證實對於非線性黏滯阻尼器,本方法的正確性有所降低。
藉由施加20筆地震記錄,比較有限元素模型(FEM)與廣義建築模型(GBM)的受震反應分析結果,顯示二者之差異普遍較小且在可接受範圍內。對於任意或均勻配置黏滯阻尼器的情況下,建築的最大位移、最大加速度、最大層間位移和最大基底剪力的誤差百分比進行了系統的分析。結果顯示該方法在處理線性黏滯阻尼器時的可靠性,平均誤差小於4%。然而,在處理非線性黏滯阻尼器時的誤差較大,平均約為6%,突顯了以簡化模型模擬非線性阻尼效應的挑戰。 總結來說,本研究提出了一種在運算效率與適用性顯著進步的建築受震反應評估方法。它為結構工程師提供了一種有效的工具,在正確性與計算效率之間進行取捨,以優化含黏滯阻尼器之建築的耐震分析與設計。本研究對於提升建築受震反應分析方法作出了貢獻,並且對於簡化模型在實際工程上可能的運用做出詮釋。 | zh_TW |
| dc.description.abstract | This research presents an innovative approach to seismic response analysis of buildings with viscous dampers, extending the applicability of simplified modelling by incorporating viscous damper properties into the Generalized Building Model (GBM). The study introduces a flexible and efficient method, characterized by a single parameter, α, which defines overall deformation type and eliminates restrictions on building characteristics. The unit impulse method is employed to determine optimal linear and nonlinear viscous damper parameters, demonstrating effectiveness regardless of damper placement patterns. The study, while achieving satisfactory results for linear viscous dampers, acknowledges a decrease in accuracy for nonlinear viscous dampers.
The comparison of responses between Finite Element Model (FEM) and GBM across 20 ground motions reveals generally small discrepancies within acceptable ranges. Error percentages for peak displacement, peak acceleration, peak inter-story drift, and peak base shear force are systematically analyzed for both arbitrary and uniform damper placements. The results underscore the method's reliability for linear viscous dampers, with average error percentages less than 4%. However, nonlinear viscous dampers introduce larger errors, averaging around 6%, emphasizing the challenges in simulating nonlinear damping effects. In conclusion, this study represents a significant advancement in time-effective and versatile seismic evaluation methods. It provides a valuable tool for structural engineers to optimize building seismic designs for incorporating viscous dampers, considering the trade-off between accuracy and computational efficiency. The findings contribute to ongoing efforts in enhancing seismic analysis methodologies for buildings with viscous dampers and offer insights into the potential of simplified models in practical engineering applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-13T16:10:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-06-13T16:10:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement ii
摘要 iv Abstract v List of Contents vii List of Tables ix List of Figures xi Chapter 1. Introduction 1 1.1 Preface 1 1.2 Research Objectives 2 1.3 Literature Review 3 1.3.1 Simplified Analysis Procedures 3 1.3.2 Generalized Building Model (GBM) 4 1.3.3 Unit Impulse method 7 1.3.4 Fluid Viscous Damper 8 1.4 Thesis outline 10 Chapter 2. Research Methodology 13 2.1 Identification of ceq and ηeq 14 2.2 Unit Impulse Intensity for Nonlinear Viscous Dampers 15 Chapter 3. Numerical Model and Ground Motions 16 3.1 PISA3D Structural Analysis Software 16 3.1.1 Introduction to PISA3D structural model 16 3.1.2 PISA3D model detailed setting and suggestion 17 3.2 Nine Story Steel Building (SAC9) 18 3.2.1 Building Information 18 3.2.2 Finite Element Model of SAC9 19 3.3 Construction of Generalized Building Model 19 3.4 Ground Motions 20 3.5 Design and Implementation of Viscous Dampers for a 5% Target Damping Ratio 21 Chapter 4. Numerical Analysis Results 24 4.1 Arbitrary Placement of Linear Viscous Dampers (SAC9) 25 4.2 Uniform Placement of Nonlinear Viscous Damper (SAC9) 25 4.3 Analysis Time 26 Chapter 5. Discussion 27 5.1 Arbitrary Placement of Linear Viscous Dampers Result 27 5.2 Uniform Placement of Nonlinear Viscous Dampers Result 28 Chapter 6. Conclusion and Suggestion 30 References 31 Table appendix 34 Figure appendix 57 Appendix 1 Ground motion data sets 96 | - |
| dc.language.iso | en | - |
| dc.subject | 簡化建模 | zh_TW |
| dc.subject | 單位脈衝法 | zh_TW |
| dc.subject | 廣義建築模型(GBM) | zh_TW |
| dc.subject | 黏滯阻尼器 | zh_TW |
| dc.subject | 受震反應分析 | zh_TW |
| dc.subject | Seismic Response Analysis | en |
| dc.subject | Generalized Building Model (GBM) | en |
| dc.subject | Simplified Modelling | en |
| dc.subject | Unit Impulse Method | en |
| dc.subject | Viscous Dampers | en |
| dc.title | Simplified Modeling for Seismic Response Analysis of Buildings with Viscous Dampers | zh_TW |
| dc.title | Simplified Modeling for Seismic Response Analysis of Buildings with Viscous Dampers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 莊明介;張家銘;林瑞良 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Chieh Chuang;Chia-Ming Chang;Jui-Liang Lin | en |
| dc.subject.keyword | 簡化建模,受震反應分析,黏滯阻尼器,廣義建築模型(GBM),單位脈衝法, | zh_TW |
| dc.subject.keyword | Simplified Modelling,Seismic Response Analysis,Viscous Dampers,Generalized Building Model (GBM),Unit Impulse Method, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202401111 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-06-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2026-06-15 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 9.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
