Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92701
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泰昌zh_TW
dc.contributor.advisorTay-Chang Wangen
dc.contributor.author高嘉鴻zh_TW
dc.contributor.authorJia-Hong Gaoen
dc.date.accessioned2024-06-13T16:06:10Z-
dc.date.available2024-06-14-
dc.date.copyright2024-06-13-
dc.date.issued2024-
dc.date.submitted2024-06-11-
dc.identifier.citation張紹勳. (2018). 邏輯斯迴歸及離散選擇模型:應用STaTa統計. 五南圖書出版股份有限公司.
Adnan Aziz, M., & Dar, H. A. (2006). Predicting corporate bankruptcy: where we stand? Corporate Governance: The international journal of business in society, 6(1), 18-33.
Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723.
Akobeng, A. K. (2007). Understanding diagnostic tests 3: receiver operating characteristic curves. Acta paediatrica, 96(5), 644-647.
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of finance, 23(4), 589-609.
Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). ZETATM analysis A new model to identify bankruptcy risk of corporations. Journal of Banking & Finance, 1(1), 29-54.
Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2014). Distressed firm and bankruptcy prediction in an international context: A review and empirical analysis of Altman''s Z-score model. Available at SSRN 2536340.
Baker, M., & Ruback, R. (1999). Estimating industry multiples. Harvard University, 1-30.
Baldwin, J., & Glezen, G. W. (1992). Bankruptcy prediction using quarterly financial statement data. Journal of Accounting, Auditing & Finance, 7(3), 269-285.
Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417.
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 71-111.
Beynon, M. J., & Peel, M. J. (2001). Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega, 29(6), 561-576.
Black, D. E., Christensen, T. E., Ciesielski, J. T., & Whipple, B. C. (2021). Non‐GAAP earnings: A consistency and comparability crisis? Contemporary Accounting Research, 38(3), 1712-1747.
Blum, M. (1974). Failing company discriminant analysis. Journal of Accounting Research, 1-25.
Boritz, J. E., & Kennedy, D. B. (1995). Effectiveness of neural network types for prediction of business failure. Expert Systems with Applications, 9(4), 503-512.
Bouwens, J., De Kok, T., & Verriest, A. (2019). The prevalence and validity of EBITDA as a performance measure. Comptabilité-Contrôle-Audit, 25(1), 55-105.
Bowen, R. M., Davis, A. K., & Matsumoto, D. A. (2005). Emphasis on pro forma versus GAAP earnings in quarterly press releases: Determinants, SEC intervention, and market reactions. The Accounting Review, 80(4), 1011-1038.
Campbell, S. V. (1996). Predicting Bankruptcy Reorganization for Closely Held Firms. Accounting Horizons, 10(3).
Carcello, J. V., & Palmrose, Z.-V. (1994). Auditor litigation and modified reporting on bankrupt clients. Journal of Accounting Research, 32, 1-30.
Casey, C., & Bartczak, N. (1985). Using operating cash flow data to predict financial distress: Some extensions. Journal of Accounting Research, 384-401.
Charitou, A., Neophytou, E., & Charalambous, C. (2004). Predicting corporate failure: empirical evidence for the UK. European accounting review, 13(3), 465-497.
Chaudhuri, A., & De, K. (2011). Fuzzy support vector machine for bankruptcy prediction. Applied Soft Computing, 11(2), 2472-2486.
Chava, S., & Roberts, M. R. (2008). How does financing impact investment? The role of debt covenants. The Journal of finance, 63(5), 2085-2121.
Chen, M.-Y. (2011). Predicting corporate financial distress based on integration of decision tree classification and logistic regression. Expert Systems with Applications, 38(9), 11261-11272.
Cielen, A., Peeters, L., & Vanhoof, K. (2004). Bankruptcy prediction using a data envelopment analysis. European Journal of Operational Research, 154(2), 526-532.
Coats, P. K., & Fant, L. F. (1993). Recognizing financial distress patterns using a neural network tool. Financial management, 142-155.
Cormier, D., Demaria, S., & Magnan, M. (2017). Beyond earnings: do EBITDA reporting and governance matter for market participants? Managerial Finance, 43(2), 193-211.
Curtis, A. B., McVay, S. E., & Whipple, B. C. (2014). The disclosure of non-GAAP earnings information in the presence of transitory gains. The Accounting Review, 89(3), 933-958.
D’Souza, J., Ramesh, K., & Shen, M. (2010). Disclosure of GAAP line items in earnings announcements. Review of Accounting Studies, 15, 179-219.
Daily, C. M., & Dalton, D. R. (1994). Bankruptcy and corporate governance: The impact of board composition and structure. Academy of Management journal, 37(6), 1603-1617.
Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 167-179.
DeAngelo, H., & DeAngelo, L. (1990). Dividend policy and financial distress: An empirical investigation of troubled NYSE firms. The Journal of finance, 45(5), 1415-1431.
Demiroglu, C., & James, C. M. (2010). The information content of bank loan covenants. The Review of Financial Studies, 23(10), 3700-3737.
Doyle, J. T., Lundholm, R. J., & Soliman, M. T. (2003). The predictive value of expenses excluded from pro forma earnings. Review of Accounting Studies, 8, 145-174.
Eickemeyer, J. (1994). Audit issues in litigation. American Law Institute—American Bar Association Course of Study Materials on Accountants’ Liability (February), 119-150.
Etheridge, H. L., Sriram, R. S., & Hsu, H. K. (2000). A comparison of selected artificial neural networks that help auditors evaluate client financial viability. Decision Sciences, 31(2), 531-550.
Falbo, P. (1991). Credit-scoring by enlarged discriminant models. Omega, 19(4), 275-289.
Fan, Y., Thomas, W. B., & Yu, X. (2019). The impact of financial covenants in private loan contracts on classification shifting. Management science, 65(8), 3637-3653.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
Fitzpatrick, P. J. (1932). A comparison of the ratios of successful industrial enterprises with those of failed companies.
Flagg, J. C., Giroux, G. A., & Wiggins, C. E. (1991). Predicting corporate bankruptcy using failing firms. Review of financial Economics, 1(1), 67.
Frederickson, J. R., & Miller, J. S. (2004). The effects of pro forma earnings disclosures on analysts'' and nonprofessional investors'' equity valuation judgments. The Accounting Review, 79(3), 667-686.
Frydman, H., Altman, E. I., & Kao, D. L. (1985). Introducing recursive partitioning for financial classification: the case of financial distress. The Journal of finance, 40(1), 269-291.
Gentry, J. A., Newbold, P., & Whitford, D. T. (1985). Classifying bankrupt firms with funds flow components. Journal of Accounting Research, 146-160.
Godwin, N. H., & Jones, J. P. (2002). Does EBITDA adequately measure operating cash flow? Journal of Accounting and Finance Research, 10(1), 25.
Gordini, N. (2014). A genetic algorithm approach for SMEs bankruptcy prediction: Empirical evidence from Italy. Expert Systems with Applications, 41(14), 6433-6445.
Grant, J., & Parker, L. (2002). EBITDA! Research in accounting regulation, 15, 205-212.
Helleren, F., & Stige, C. F. (2017). The application of EBITDA for performance measurement, and factors influencing it BI Norwegian Business School].
Henebry, K. L. (1996). Do cash flow variables improve the predictive accuracy of a Cox proportional hazards model for bank failure? The quarterly review of economics and finance, 36(3), 395-409.
Hillegeist, S. A., Keating, E. K., Cram, D. P., & Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9, 5-34.
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2000). Applied logistic regression. Wiley New York.
Izan, H. Y. (1984). Corporate distress in Australia. Journal of Banking & Finance, 8(2), 303-320.
Johnsen, T., & Melicher, R. W. (1994). Predicting corporate bankruptcy and financial distress: Information value added by multinomial logit models. Journal of economics and Business, 46(4), 269-286.
Jones, S., Johnstone, D., & Wilson, R. (2017). Predicting corporate bankruptcy: An evaluation of alternative statistical frameworks. Journal of Business Finance & Accounting, 44(1-2), 3-34.
Kennedy, D. B., & Shaw, W. H. (1991). Evaluating financial distress resolution using prior audit opinions. Contemporary Accounting Research, 8(1), 97-114.
Kim, S. Y. (2011). Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis. The Service Industries Journal, 31(3), 441-468.
Koh, H. C. (1991). Model predictions and auditor assessments of going concern status. Accounting and Business Research, 21(84), 331-338.
Koh, H. C., & Tan, S. S. (1999). A neural network approach to the prediction of going concern status. Accounting and Business Research, 29(3), 211-216.
Kovacova, M., & Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 775-791.
Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques–A review. European Journal of Operational Research, 180(1), 1-28.
Lakshan, A., & Wijekoon, W. (2012). Corporate governance and corporate failure. Procedia Economics and Finance, 2, 191-198.
Lane, W. R., Looney, S. W., & Wansley, J. W. (1986). An application of the Cox proportional hazards model to bank failure. Journal of Banking & Finance, 10(4), 511-531.
Lennox, C. (1999). Identifying failing companies: a re-evaluation of the logit, probit and DA approaches. Journal of economics and Business, 51(4), 347-364.
Li, H., & Sun, J. (2008). Ranking-order case-based reasoning for financial distress prediction. Knowledge-based systems, 21(8), 868-878.
Li, H., Sun, J., & Sun, B.-L. (2009). Financial distress prediction based on OR-CBR in the principle of k-nearest neighbors. Expert Systems with Applications, 36(1), 643-659.
Lie, E., & Lie, H. J. (2002). Multiples used to estimate corporate value. Financial Analysts Journal, 58(2), 44-54.
Lys, T., & Watts, R. L. (1994). Lawsuits against auditors. Journal of Accounting Research, 32, 65-93.
MacDonald, E. (1999). Analysts increasingly favor using cash flow over reported earnings in stock valuations. Wall Street Journal, C2.
McKee, T. E. (2003). Rough sets bankruptcy prediction models versus auditor signalling rates. Journal of Forecasting, 22(8), 569-586.
Mihalovic, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics & Sociology, 9(4), 101.
Min, J. H., & Lee, Y.-C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603-614.
Mulford, C. W., & Comiskey, E. E. (2005). Creative cash flow reporting: Uncovering sustainable financial performance. John Wiley & Sons.
Nissim, D. (2019). Ebitda, Ebita, or Ebit? Columbia Business School Research Paper(17-71).
Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. 1990 IJCNN International Joint Conference on neural networks,
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 109-131.
Olson, D. L., Delen, D., & Meng, Y. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52(2), 464-473.
Pastena, V., & Ruland, W. (1986). The merger/bankruptcy alternative. Accounting Review, 288-301.
Peel, M. J., Peel, D. A., & Pope, P. F. (1986). Predicting corporate failure—some results for the UK corporate sector. Omega, 14(1), 5-12.
Premachandra, I. M., Bhabra, G. S., & Sueyoshi, T. (2009). DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique. European Journal of Operational Research, 193(2), 412-424.
Rozenbaum, O. (2014). EBITDA Disclosure and Overinvestment in Capital. SSRN Electronic Journal. DOI, 10.
Sherman, D. H., & Young, D. S. (2016). Finance & Accounting: Where Financial Reporting Still Falls Short. Harvard Business Review.
Shin, K.-S., Lee, T. S., & Kim, H.-j. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(1), 127-135.
Shin, K.-S., & Lee, Y.-J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 23(3), 321-328.
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The journal of business, 74(1), 101-124.
Smith, M., & Stradley, B. (2010). New research tracks the evolution of annual incentives plans. Towers Watson Executive compensation bulletin.
Sriram, R. S. (2008). Relevance of intangible assets to evaluate financial health. Journal of Intellectual Capital, 9(3), 351-366.
Stumpp, P. M., Marshella, T., Rowan, M., McCreary, R. K. V., & Coppola, M. (2000). Putting EBITDA In Perspective Ten Critical Failings Of EBITDA As The Principal Determinant Of Cash Flow.
Suozzo, P., Cooper, S., Sutherland, G., & Deng, Z. (2001). Valuation multiples: A primer. UBS Warburg: Valuation and Accounting, 1, 1-47.
Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of neural networks: the case of bank failure predictions. Management science, 38(7), 926-947.
Theodossiou, P. (1991). Alternative models for assessing the financial condition of business in Greece. Journal of Business Finance and Accounting, 18(5), 697-720.
Tian, S., & Yu, Y. (2017). Financial ratios and bankruptcy predictions: An international evidence. International Review of Economics & Finance, 51, 510-526.
Ward, T. J., & Foster, B. P. (1997). A note on selecting a response measure for financial distress. Journal of Business Finance & Accounting, 24(6), 869-879.
Watts, R. L., & Zimmerman, J. L. (1986). Positive accounting theory.
Wilson, R. L., & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11(5), 545-557.
Zavgren, C. V. (1985). Assessing the vulnerability to failure of American industrial firms: A logistic analysis. Journal of Business Finance & Accounting, 12(1).
Zelenkov, Y., Fedorova, E., & Chekrizov, D. (2017). Two-step classification method based on genetic algorithm for bankruptcy forecasting. Expert Systems with Applications, 88, 393-401.
Zhang, G., Hu, M. Y., Patuwo, B. E., & Indro, D. C. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European Journal of Operational Research, 116(1), 16-32.
Zhu, G.-N., Hu, J., Qi, J., Ma, J., & Peng, Y.-H. (2015). An integrated feature selection and cluster analysis techniques for case-based reasoning. Engineering Applications of Artificial Intelligence, 39, 14-22.
Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 59-82.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92701-
dc.description.abstract本研究旨在比較扣除所得稅、利息、折舊及攤銷前利潤率(EBITDA利潤率)及營業利益率於預測危機企業之表現並判斷EBITDA利潤率是否為較佳之財務危機預測因子。研究樣本取自台灣經濟新報(TEJ)資料庫,並以2008年至2022年間之上市櫃企業作為研究對象,使用Logit迴歸分析及Probit迴歸分析來檢測EBITDA利潤率及營業利益率於財務危機發生前三年間之反應能力。研究結果指出,EBITDA利潤率及營業利益率於兩種統計方法下之預測能力並無顯著差異,雖然EBITDA利潤率最終模型及營業利益率最終模型於危機前三年內之整體預測準確率均達90%以上之水準,型一誤差(%)卻表明預測危機企業之能力仍不理想,顯示EBITDA利潤率無法作為危機判別之重要預測指標。另外,相關實證結果亦表明Logit迴歸分析於危機前二年內之預測表現略優於Probit迴歸分析,而隨著預測時點之接近,二最終模型之預測錯誤成本均呈現逐漸上升之跡象,顯示模型早期之預警效果較佳。zh_TW
dc.description.abstractThis study aims to compare the effectiveness of the EBITDA margin and the operating profit margin in predicting financially distressed companies and to determine if the EBITDA margin is a better predictor of financial crises. The research sample is taken from the Taiwan Economic Journal (TEJ) database and focuses on listed companies from 2008 to 2022. Logistic regression analysis and Probit regression analysis are used to examine the responsiveness of the EBITDA margin and the operating profit margin during the three years preceding a financial crisis. The results indicate that there is no significant difference in predictive ability between the EBITDA margin and the operating profit margin under both statistical methods. Although both the final EBITDA margin model and the final operating profit margin model achieved an overall prediction accuracy of over 90% within the three years preceding the crisis, Type I error (%) suggests that the ability to predict distressed companies is still not ideal. This implies that the EBITDA margin cannot be considered an important predictive indicator of crises. Additionally, empirical results show that Logistic regression analysis performs slightly better than Probit regression analysis in the two years before the crisis. As the prediction point approaches, the prediction error costs of both final models tend to increase, indicating that the early warning effect of the models is better.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-06-13T16:06:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-06-13T16:06:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iii
圖次 v
表次 vi
第一章 緒論 1
第二章 文獻回顧 3
第一節 EBITDA介紹 3
第二節 企業財務危機定義 4
第三節 財務危機預警模型之相關文獻 6
一、 單變量分析(Univariate analysis) 7
二、 多變量區別分析(Multivariate discriminant analysis) 7
三、 Logit迴歸分析(Logistic regression analysis) 9
四、 Probit迴歸分析(Probit regression analysis) 10
五、 類神經網路(Artificial neural network) 11
六、 資料包絡分析(Data envelopment analysis) 12
七、 存活分析(Survival analysis) 12
八、 支持向量機(Support vector machine) 13
第三章 研究設計 17
第一節 資料來源及樣本選取 17
第二節 研究變數定義 22
一、 依變數(Dependent variable) 22
二、 自變數(Independent variable) 22
三、 控制變數(Control variable) 22
第三節 研究方法及模型建構 22
一、 Logit迴歸模型 22
二、 Probit迴歸模型 23
第四節 模型檢驗 24
一、 概似比檢定(Likelihood ratio test) 24
二、 偽R2(Pseudo R2) 24
三、 卡方檢定(Chi-squared test) 25
四、 赤池信息量準則(Akaike information criterion) 25
第五節 模型準確度檢測 25
一、 混淆矩陣(Confusion matrix) 25
二、 ROC曲線(Receiver operating characteristic curve) 26
第六節 預測錯誤成本 27
第四章 實證結果分析 28
第一節 敘述性統計 28
第二節 Logit迴歸模型 33
一、 Logit危機前一年 33
二、 Logit危機前二年 33
三、 Logit危機前三年 34
第三節 Probit迴歸模型 35
一、 Probit危機前一年 35
二、 Probit危機前二年 35
三、 Probit危機前三年 36
第四節 預測準確度之比較 49
一、 危機前一年 49
二、 危機前二年 50
三、 危機前三年 51
第五節 預測錯誤成本分析 64
第六節 預測有效性測試 65
一、 危機前一年 68
二、 危機前二年 69
三、 危機前三年 69
四、 預測錯誤成本 71
第五章 結論與建議 74
參考文獻 76
附錄一 ROC曲線 82
-
dc.language.isozh_TW-
dc.subject財務危機預警模型zh_TW
dc.subject預測錯誤成本zh_TW
dc.subjectEBITDA利潤率zh_TW
dc.subject擬制性盈餘zh_TW
dc.subject混淆矩陣zh_TW
dc.subjectfinancial early warning modelsen
dc.subjectconfusion matrixen
dc.subjectEBITDA marginen
dc.subjectprediction error costsen
dc.subjectpro-forma earningsen
dc.title企業財務危機預警模型—EBITDA利潤率與營業利益率之分析zh_TW
dc.titleFinancial Early Warning Model—Analysis of EBITDA Margin and Operating Marginen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor劉嘉雯zh_TW
dc.contributor.coadvisorChia-Wen Liuen
dc.contributor.oralexamcommittee曾怡潔;林瑞青zh_TW
dc.contributor.oralexamcommitteeYi-Jie Tseng;Ruey-Ching Linen
dc.subject.keyword財務危機預警模型,擬制性盈餘,EBITDA利潤率,混淆矩陣,預測錯誤成本,zh_TW
dc.subject.keywordfinancial early warning models,pro-forma earnings,EBITDA margin,confusion matrix,prediction error costs,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202401130-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-06-12-
dc.contributor.author-college管理學院-
dc.contributor.author-dept會計學系-
dc.date.embargo-lift2029-06-11-
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
1.75 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved